document.write( "Question 876881: Find the equation in point slope form of the line that is perpendicular inspector of the segment between (16,-4) and (-2,-76)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #529093 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find the equation in point slope form of the line that is the perpendicular bisector of the segment between (16,-4) and (-2,-76)
\n" ); document.write( "**
\n" ); document.write( "I am assuming you meant perpendicular bisector for perpendicular inspector:
\n" ); document.write( "..
\n" ); document.write( "slope of line connecting given points=∆y/∆x=(-76-(-4))/(-2-16)=-72/-18=4
\n" ); document.write( "coordinates of perpendicular bisector=midpoint of given points=((x1+x2)/2, (y1+y2)/2)=(16-2)/2,(-4-76)/2=(7,-40)
\n" ); document.write( "slope of line perpendicular to given line=-1/4 (negative reciprocal)
\n" ); document.write( "form of equation for a line: y=mx+b, m=slope, b=y-intercept
\n" ); document.write( "y=-x/3+b
\n" ); document.write( "solve for b using coordinates of perpendicular bisector
\n" ); document.write( "-40=-7/4+b
\n" ); document.write( "b=-153/4
\n" ); document.write( "equation: y=-x/4-153/4
\n" ); document.write( "
\n" );