document.write( "Question 875777: A rectangular has a perimeter of 120 ft. Find the width if area is area is to be maximum.? \n" ); document.write( "
Algebra.Com's Answer #528448 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
\"P=2L%2B2W=120\"
\n" ); document.write( "\"L%2BW=60\"
\n" ); document.write( "For a rectangle,
\n" ); document.write( "\"A=L%2AW\"
\n" ); document.write( "From above,
\n" ); document.write( "\"L=60-W\"
\n" ); document.write( "Substituting,
\n" ); document.write( "\"A=%2860-W%29W\"
\n" ); document.write( "\"A=60W-W%5E2\"
\n" ); document.write( "TO find the maximum, take the derivative and set it to zero.
\n" ); document.write( "\"dA%2FdW=60-2W\"
\n" ); document.write( "\"60-2W=0\"
\n" ); document.write( "\"2W=60\"
\n" ); document.write( "\"W=30\"
\n" ); document.write( "\"L=30\"
\n" ); document.write( "The maximum area occurs when the rectangle is a square.
\n" ); document.write( "
\n" );