document.write( "Question 872137: write the standard form equation of an ellipse with the given characteristics: vertices at (9,-3) and (-3,-3) foci at (7,-3) and (-1,-3)
\n" ); document.write( "the equation we have been using is (x-h)^2/a^2 = (y-k)^2/b^2
\n" ); document.write( "

Algebra.Com's Answer #526008 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
write the standard form equation of an ellipse with the given characteristics: vertices at (9,-3) and (-3,-3) foci at (7,-3) and (-1,-3)
\n" ); document.write( "***
\n" ); document.write( "Given ellipse has a horizontal major axis.
\n" ); document.write( "Its standard form of equation: \"%28x-h%29%5E2%2Fa%5E2%2B%28y-k%29%5E2%2Fb%5E2=1\", a>b, (h,k)=coordinates of center
\n" ); document.write( "x-coordinate of center=3 (midpoint of vertices)
\n" ); document.write( "y-coordinate of center=-3
\n" ); document.write( "center:(3,-3)
\n" ); document.write( "length of major axis=12=2a
\n" ); document.write( "a=6
\n" ); document.write( "a^2=36
\n" ); document.write( "c=4(distance from center to foci on the vertical major axis)
\n" ); document.write( "c^2=16
\n" ); document.write( "c^2=a^2-b^2
\n" ); document.write( "b^2=a^2-c^2=36-16=20
\n" ); document.write( "equation of given ellipse: \"%28x-3%29%5E2%2F36%2B%28y%2B3%29%5E2%2F20=1\"
\n" ); document.write( "
\n" );