document.write( "Question 871953: If the two roots of the equation: X^2+X-3=0 are M and N:\r
\n" );
document.write( "\n" );
document.write( "a. Form the equation that has the roots 1/M, 1/M.
\n" );
document.write( "b. Form the equation that has the roots M^2, N^2. \n" );
document.write( "
Algebra.Com's Answer #525817 by mananth(16946)![]() ![]() You can put this solution on YOUR website! If the two roots of the equation: X^2+X-3=0 are M and N:\r \n" ); document.write( "\n" ); document.write( "sum of roots = -b/a in equation ax^2+bx +c =0\r \n" ); document.write( "\n" ); document.write( "product of roots = c/a\r \n" ); document.write( "\n" ); document.write( "Therefore in x^2+x-3 =0 \n" ); document.write( "M+N = =-1 \n" ); document.write( "MN = -3\r \n" ); document.write( "\n" ); document.write( "The roots of the required equation are 1/M & 1/N\r \n" ); document.write( "\n" ); document.write( "First we find the value of 1/M + 1/N and 1/MN and substitute (M+N) and MN\r \n" ); document.write( "\n" ); document.write( "1/M + 1/N = (M+N)/MN = -1/-3 = 1/3\r \n" ); document.write( "\n" ); document.write( "1/M * 1/N = 1/MN = 1/-3= -1/3\r \n" ); document.write( "\n" ); document.write( "The required equation is \n" ); document.write( "x^2-(sum of roots)x + ( product of roots =0\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "mmultiply equation by 3\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "M^ N^2 are the roots\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "frame the equation as done above\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "multiply by 9\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |