document.write( "Question 871846: A picture has dimensions 20cm by 30 cm. It is surrounded by a frame of uniform width whose outer edge is a rectangle with an area of 1800 cm squared. To the nearest .1 cm, find the width of the frame. \n" ); document.write( "
Algebra.Com's Answer #525772 by mananth(16946)![]() ![]() You can put this solution on YOUR website! Let the width be x \n" ); document.write( ".. \n" ); document.write( "Length of picture 30 cm 54 \n" ); document.write( "width of picture 20 cm 44 \n" ); document.write( " \n" ); document.write( "Area = 600 m^2 \n" ); document.write( "Area of frame 1800 m^2 \n" ); document.write( "length of frame & plot 30 + 2 x \n" ); document.write( "width of frame & plot 20 + 2 x \n" ); document.write( " \n" ); document.write( "( 30 + 2 x ) ( 20 + 2 x ) + 0 = 1,800 \n" ); document.write( " \n" ); document.write( " 600 + 60 x + 40 x + 4 X^2 + 0 = 1,800 \n" ); document.write( " 4 X^2 + 100 x + -1,800 = 0 \n" ); document.write( " Find the roots of the equation by quadratic formula \n" ); document.write( " a= 4 b= 100 c= -1,800 \n" ); document.write( " b^2-4ac= 10,000 - -28,800 \n" ); document.write( " b^2-4ac= 38,800 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " x1=( -100 + 197 )/ 8 \n" ); document.write( " x1= 12.122 \n" ); document.write( " x2=( -100 -197 ) / 8 \n" ); document.write( " x2= -15.500 \n" ); document.write( " Ignore negative value \n" ); document.write( " width = 12.1 cm \n" ); document.write( " \n" ); document.write( " |