document.write( "Question 868768: Construct a formal proof for the following argument\r
\n" );
document.write( "\n" );
document.write( "1. P>R
\n" );
document.write( "2. (Q&P)vP
\n" );
document.write( "Conclusion R \n" );
document.write( "
Algebra.Com's Answer #523814 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. P -> R \r\n" ); document.write( "2. (Q & P) v P\r\n" ); document.write( "Conclusion R\r\n" ); document.write( "\r\n" ); document.write( "(Q & P) v P given premise\r\n" ); document.write( "\r\n" ); document.write( "(QvP)&(PvP) distributive law of v over &\r\n" ); document.write( "\r\n" ); document.write( "(QvP)&P idempotent law, PvP is equivalent to P\r\n" ); document.write( "\r\n" ); document.write( "P simplification\r\n" ); document.write( "\r\n" ); document.write( "P -> R given premise\r\n" ); document.write( "\r\n" ); document.write( "P&(P -> R) From two preceding statements\r\n" ); document.write( "\r\n" ); document.write( "P&(~PvR) Implication\r\n" ); document.write( "\r\n" ); document.write( "(P&~P)v(P&R) Distributive law of & over v\r\n" ); document.write( "\r\n" ); document.write( "Fv(P&R) Contradiction P&~P is equivalent to F\r\n" ); document.write( "\r\n" ); document.write( "P&R F is the identity for v\r\n" ); document.write( "\r\n" ); document.write( "R Simplification\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |