document.write( "Question 868612: Consider the intersection of the functions y=mx+4 and y=4/x\r
\n" ); document.write( "\n" ); document.write( "b. Investigate the values of m that provide 0, 1 or 2 points of intersection
\n" ); document.write( "

Algebra.Com's Answer #523675 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "We draw the graph of y=4/x, by getting and plotting some points:\r\n" );
document.write( "\r\n" );
document.write( " x|y\r\n" );
document.write( "--|--\r\n" );
document.write( "±1|±4\r\n" );
document.write( "±2|±2\r\n" );
document.write( "±3|±1.3\r\n" );
document.write( "±4|±1\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now the lines y=mx+4 will all have y intercept (0,4),\r\n" );
document.write( "but will have different slopes.  Here are some lines\r\n" );
document.write( "that have the equation y=mx+4 where m has different\r\n" );
document.write( "values\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Some of those lines intersect the graph in 0 point, 1 points or 2 points.\r\n" );
document.write( "\r\n" );
document.write( "The brownish-green line does not intersect it at all\r\n" );
document.write( "The green and horizontal intersect the graph in 1 point\r\n" );
document.write( "The purple and the light blue lines intersect the curve\r\n" );
document.write( "in two points each.\r\n" );
document.write( "\r\n" );
document.write( "If we solve the system of equations:\r\n" );
document.write( "\r\n" );
document.write( "\"system%28y=mx%2B4%2Cy=4%2Fx%29\"\r\n" );
document.write( "\r\n" );
document.write( "by substitution, we get\r\n" );
document.write( "\r\n" );
document.write( "\"mx%2B4\"\"%22%22=%22%22\"\"4%2Fx\"\r\n" );
document.write( "\r\n" );
document.write( "\"mx%5E2%2B4x\"\"%22%22=%22%22\"\"4\"\r\n" );
document.write( "\r\n" );
document.write( "\"mx%5E2%2B4x-4\"\"%22%22=%22%22\"\"%220%22\"\r\n" );
document.write( "\r\n" );
document.write( "What determines whether the line y=mx+4 intersects\r\n" );
document.write( "the curve 0, 1, or 2 times, is whether this\r\n" );
document.write( "quadratic equation has 0,1, or 2 real solutions.\r\n" );
document.write( "\r\n" );
document.write( "And what determines whether a quadratic equation has\r\n" );
document.write( "0, 1, or 2 real solutions is the DISCRIMINANT \"b%5E2-4ac\".\r\n" );
document.write( "\r\n" );
document.write( "\"mx%5E2%2B4x-4\"\"%22%22=%22%22\"\"%220%22\" \r\n" );
document.write( "\r\n" );
document.write( "a=m, b=4, c=-4 so the \r\n" );
document.write( "\r\n" );
document.write( "discriminant = \"b%5E2-4ac\" = \"4%5E2-4m%28-4%29\" = \"16%2B16m\"\r\n" );
document.write( "\r\n" );
document.write( "Case 1:  If the discriminant is negative, there will be NO real solutions.\r\n" );
document.write( "\r\n" );
document.write( "So we set the discriminant less than 0\r\n" );
document.write( "\r\n" );
document.write( "\"16%2B16m%3C0\"\r\n" );
document.write( "      \"16m%3C-16\"\r\n" );
document.write( "       \"m%3C-4\"\r\n" );
document.write( "\r\n" );
document.write( "So when m is less than -4, there will be NO solutions.\r\n" );
document.write( "\r\n" );
document.write( "So we set the discriminant less than 0\r\n" );
document.write( "\r\n" );
document.write( "\"16%2B16m%3C0\"\r\n" );
document.write( "      \"16m%3C-16\"\r\n" );
document.write( "       \"m%3C-1\"\r\n" );
document.write( "\r\n" );
document.write( "So when m is less than -1, there will be NO solutions.\r\n" );
document.write( "and therefore the line will NOT intersect the curve at all.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Case 2: If the discriminant is EQUAL to zero, there will be ONE \r\n" );
document.write( "real solution, and therefore the line will intersect the curve ONE time.\r\n" );
document.write( "\r\n" );
document.write( "So we set the discriminant EQUAL to 0\r\n" );
document.write( "\r\n" );
document.write( "\"16%2B16m=0\"\r\n" );
document.write( "      \"16m=-16\"\r\n" );
document.write( "       \"m=-1\"\r\n" );
document.write( "\r\n" );
document.write( "So when m is equal to -1, there will be ONE real solutions.\r\n" );
document.write( "and therefore the line will intersect the curve ONE time.\r\n" );
document.write( "\r\n" );
document.write( "Case 3: If the discriminant is positive, there will be TWO real solutions.\r\n" );
document.write( "\r\n" );
document.write( "So we set the discriminant GREATER than 0\r\n" );
document.write( "\r\n" );
document.write( "\"16%2B16m%3E0\"\r\n" );
document.write( "      \"16m%3E-16\"\r\n" );
document.write( "       \"m%3E-1\"\r\n" );
document.write( "\r\n" );
document.write( "So when m is greater than -1, there will be TWO solutions,\r\n" );
document.write( "and therefore the line will intersect the curve at TWICE.\r\n" );
document.write( "\r\n" );
document.write( "Answer:\r\n" );
document.write( "\r\n" );
document.write( "If the slope m < -1, the line y=mx+4 will intersect the curve 0 times.\r\n" );
document.write( "If the slope m = -1, the line y=mx+4 will intersect the curve 1 time.\r\n" );
document.write( "If the slope m > -1, the line y=mx+4 will intersect the curve 2 times.\r\n" );
document.write( " \r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );