document.write( "Question 868034: The volume of grains in a silo at a particular time (measured in hours) is given
\n" );
document.write( "by V (t) = 4t(3-t) m3. Find the rate of change of the volume of grains in the
\n" );
document.write( "silo from first principles (using the definition of the rate of change). \n" );
document.write( "
Algebra.Com's Answer #523449 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! My answer is: \n" ); document.write( "V(t)=4t(3-t) \n" ); document.write( "Rate of change of volume of V(t) is V'(t) \n" ); document.write( "V(t)=4t(3-t) \n" ); document.write( "------------------------- \n" ); document.write( "V(t) = 12t-4t^2 \n" ); document.write( "------------------------- \n" ); document.write( "V(t+D) = 12(t+D) - 4(t+D)^2 \n" ); document.write( "= 12t+12D -4(t^2+ 2tD + D^2) \n" ); document.write( "= 12t +12D -4t^2 -8tD -4D^2\r \n" ); document.write( "\n" ); document.write( "------------------------------------------- \n" ); document.write( " [V(t+∆t)- V(t)] / ∆t \n" ); document.write( "= [ 12D - 8(tD) -4(D)^2]/D \n" ); document.write( "= [12 - 8t - 4D] \n" ); document.write( "lim of V(t)/Dt as V goes to 0 = 12-8t \n" ); document.write( "================ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "=============== \n" ); document.write( " \n" ); document.write( " |