document.write( "Question 868034: The volume of grains in a silo at a particular time (measured in hours) is given
\n" ); document.write( "by V (t) = 4t(3-t) m3. Find the rate of change of the volume of grains in the
\n" ); document.write( "silo from first principles (using the definition of the rate of change).
\n" ); document.write( "

Algebra.Com's Answer #523449 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
My answer is:
\n" ); document.write( "V(t)=4t(3-t)
\n" ); document.write( "Rate of change of volume of V(t) is V'(t)
\n" ); document.write( "V(t)=4t(3-t)
\n" ); document.write( "-------------------------
\n" ); document.write( "V(t) = 12t-4t^2
\n" ); document.write( "-------------------------
\n" ); document.write( "V(t+D) = 12(t+D) - 4(t+D)^2
\n" ); document.write( "= 12t+12D -4(t^2+ 2tD + D^2)
\n" ); document.write( "= 12t +12D -4t^2 -8tD -4D^2\r
\n" ); document.write( "\n" ); document.write( "-------------------------------------------
\n" ); document.write( " [V(t+∆t)- V(t)] / ∆t
\n" ); document.write( "= [ 12D - 8(tD) -4(D)^2]/D
\n" ); document.write( "= [12 - 8t - 4D]
\n" ); document.write( "lim of V(t)/Dt as V goes to 0 = 12-8t
\n" ); document.write( "================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "===============
\n" ); document.write( "
\n" ); document.write( "
\n" );