document.write( "Question 866660: Suppose we want a 90% confidence interval for the average amount of time (in minutes) spent per week on homework by the students in a large introductory statistics course at a large university. The interval is to have a margin of error of 2 minutes, and the amount spent has a Normal distribution with a standard deviation = 30 minutes. \r
\n" ); document.write( "\n" ); document.write( "The number of observations required is \r
\n" ); document.write( "\n" ); document.write( "Question 5 options:
\n" ); document.write( "
\n" ); document.write( "25\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "30\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "608\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "609
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #522417 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Use this table to find the critical value to be z = 1.645 (look in the row that starts with \"infinity\", look above the 90%)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we know the following info\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ME = 2 (given margin of error)
\n" ); document.write( "s = 30 (given standard deviation)
\n" ); document.write( "z = 1.645 (found using the table given above)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Margin of Error (ME)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ME = z*s/sqrt(n)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2 = 1.645*30/sqrt(n)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2 = 49.35/sqrt(n)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2*sqrt(n) = 49.35\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "sqrt(n) = 49.35/2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "sqrt(n) = 24.675\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = (24.675)^2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 608.855625\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 609 round UP to the nearest whole number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Why do we round up? Well if we round down to 608, then we will have a margin of error (ME) larger than 2. We round up to clear this hurdle (since larger n leads to smaller ME). This happens whenever you get a decimal result for these type of problems.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So you need a sample size of at least 609 students to make sure the margin of error (ME) is 2 or less.
\n" ); document.write( "
\n" ); document.write( "
\n" );