document.write( "Question 865653: identify the vertex and focus of this parabola:
\n" ); document.write( "y-4=1/16(x-2)^\r
\n" ); document.write( "\n" ); document.write( "x+3=1/28(y-5)^
\n" ); document.write( "

Algebra.Com's Answer #522161 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
identify the vertex and focus of this parabola:
\n" ); document.write( "y-4=1/16(x-2)^2
\n" ); document.write( "x+3=1/28(y-5)^2
\n" ); document.write( "***
\n" ); document.write( "y-4=1/16(x-2)^2
\n" ); document.write( "(x-2)^2=16(y-4)
\n" ); document.write( "Parabola opens up.
\n" ); document.write( "Its basic form of equation: (x-h)^2=4p(y-k), (h,k)=coordinates of vertex.
\n" ); document.write( "For given parabola:
\n" ); document.write( "vertex: (2,4)
\n" ); document.write( "axis of symmetry: x=2
\n" ); document.write( "4p=16
\n" ); document.write( "p=4
\n" ); document.write( "focus:(2,8) (p-distance above vertex on the axis of symmetry)
\n" ); document.write( "...
\n" ); document.write( "x+3=1/28(y-5)^2
\n" ); document.write( "(y-5)^2=28(x+3)
\n" ); document.write( "Parabola opens right.
\n" ); document.write( "Its basic form of equation: (y-k)^2=4p(x-hx), (h,k)=coordinates of vertex.
\n" ); document.write( "For given parabola:
\n" ); document.write( "vertex: (-3,5)
\n" ); document.write( "axis of symmetry: y=5
\n" ); document.write( "4p=28
\n" ); document.write( "p=7
\n" ); document.write( "focus:(4,5) (p-distance right of vertex on the axis of symmetry)
\n" ); document.write( "
\n" ); document.write( "
\n" );