document.write( "Question 865653: identify the vertex and focus of this parabola:
\n" );
document.write( "y-4=1/16(x-2)^\r
\n" );
document.write( "\n" );
document.write( "x+3=1/28(y-5)^ \n" );
document.write( "
Algebra.Com's Answer #522161 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! identify the vertex and focus of this parabola: \n" ); document.write( "y-4=1/16(x-2)^2 \n" ); document.write( "x+3=1/28(y-5)^2 \n" ); document.write( "*** \n" ); document.write( "y-4=1/16(x-2)^2 \n" ); document.write( "(x-2)^2=16(y-4) \n" ); document.write( "Parabola opens up. \n" ); document.write( "Its basic form of equation: (x-h)^2=4p(y-k), (h,k)=coordinates of vertex. \n" ); document.write( "For given parabola: \n" ); document.write( "vertex: (2,4) \n" ); document.write( "axis of symmetry: x=2 \n" ); document.write( "4p=16 \n" ); document.write( "p=4 \n" ); document.write( "focus:(2,8) (p-distance above vertex on the axis of symmetry) \n" ); document.write( "... \n" ); document.write( "x+3=1/28(y-5)^2 \n" ); document.write( "(y-5)^2=28(x+3) \n" ); document.write( "Parabola opens right. \n" ); document.write( "Its basic form of equation: (y-k)^2=4p(x-hx), (h,k)=coordinates of vertex. \n" ); document.write( "For given parabola: \n" ); document.write( "vertex: (-3,5) \n" ); document.write( "axis of symmetry: y=5 \n" ); document.write( "4p=28 \n" ); document.write( "p=7 \n" ); document.write( "focus:(4,5) (p-distance right of vertex on the axis of symmetry) \n" ); document.write( " \n" ); document.write( " |