document.write( "Question 858606: If $4000 is borrowed at a rate of 4.75% interest per year, compounded quarterly, find the amount due at the end of the given number of years. (Round your answers to the nearest cent.) \r
\n" ); document.write( "\n" ); document.write( "a) 5 years\r
\n" ); document.write( "\n" ); document.write( "b) 7 years\r
\n" ); document.write( "\n" ); document.write( "c) 9 years
\n" ); document.write( "

Algebra.Com's Answer #517279 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
If $4000 is borrowed at a rate of 4.75% interest per year, compounded quarterly, find the amount due at the end of the given number of years. (Round your answers to the nearest cent.)
\n" ); document.write( "a) 5 years
\n" ); document.write( "b) 7 years
\n" ); document.write( "c) 9 years
\n" ); document.write( "***
\n" ); document.write( "Compound interest formula: A=P(1+i)^n, P=initial investment, interest rate per period, A=amount after n periods.
\n" ); document.write( "For given problem:
\n" ); document.write( "P=$4000
\n" ); document.write( "i=.0475/4 (quarterly compounding)
\n" ); document.write( "n=(4 periods/year), 20, 28, or 36
\n" ); document.write( "...
\n" ); document.write( "n=20(5 yrs)
\n" ); document.write( "A=4000(1+(.0475/4))^20=4000*1.2663=5065.21
\n" ); document.write( "...
\n" ); document.write( "n=28(7 yrs)
\n" ); document.write( "A=4000(1+(.0475/4))^28=4000*1.3917=5566.88
\n" ); document.write( "...
\n" ); document.write( "n=36(9 yrs)
\n" ); document.write( "A=4000(1+(.0475/4))^36=4000*1.5296=6118.25
\n" ); document.write( "...
\n" ); document.write( "amount due at the end of:
\n" ); document.write( "a) 5 years=$5065.21
\n" ); document.write( "b) 7 years=$5566.88
\n" ); document.write( "c) 9 years=$6118.25
\n" ); document.write( "
\n" ); document.write( "
\n" );