Algebra.Com's Answer #515932 by edjones(8007)  You can put this solution on YOUR website! 3rs-s^2=2 \n" );
document.write( "2r-3s=-4 \n" );
document.write( ". \n" );
document.write( "2r=3s-4 \n" );
document.write( "r=(3s-4)/2 \n" );
document.write( ". \n" );
document.write( "3s((3s-4)/2)-s^2=2 \n" );
document.write( "(9s^2-12s)/2-s^2=2 \n" );
document.write( "9s^2-12s-2s^2=4 \n" );
document.write( "7s^2-12s-4=0 \n" );
document.write( "s= -2/7, s=2 See below. I'll let you figure out r. \n" );
document.write( ". \n" );
document.write( "Ed \n" );
document.write( ". \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: SOLVE quadratic equation with variable | \n" );
document.write( "Quadratic equation (in our case ) has the following solutons: \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " For these solutions to exist, the discriminant should not be a negative number. \n" );
document.write( " \n" );
document.write( " First, we need to compute the discriminant : . \n" );
document.write( " \n" );
document.write( " Discriminant d=256 is greater than zero. That means that there are two solutions: . \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " Quadratic expression can be factored: \n" );
document.write( "  \n" );
document.write( " Again, the answer is: 2, -0.285714285714286.\n" );
document.write( "Here's your graph: \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " |