document.write( "Question 855358: If (a+b)²+(b+c)²+(c+d)²=4(ab+bc+cd), prove that a=b=c=d.\r
\n" );
document.write( "\n" );
document.write( "Thanks!! :) \n" );
document.write( "
Algebra.Com's Answer #515286 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "(a+b)²+(b+c)²+(c+d)²=4(ab+bc+cd), \r\n" ); document.write( "\r\n" ); document.write( "a²+2ab+b²+b²+2bc+c²+c²+2cd+d² = 4ab+4bc+4cd\r\n" ); document.write( "\r\n" ); document.write( "Get 0 on the right by subtracting it from both sides:\r\n" ); document.write( "\r\n" ); document.write( "a²-2ab+b²+b²-2bc+c²+c²-2cd+d² = 0\r\n" ); document.write( "\r\n" ); document.write( "(a-b)²+(b-c)²+(c-d)² = 0\r\n" ); document.write( "\r\n" ); document.write( "The three terms on the left are non-negative.\r\n" ); document.write( "\r\n" ); document.write( "Thus they must all be 0.\r\n" ); document.write( "\r\n" ); document.write( "Thus a-b=0, which means a=b.\r\n" ); document.write( " b-c=0, which means b=c,\r\n" ); document.write( " c-d=0, which means c=d\r\n" ); document.write( "\r\n" ); document.write( "So a=b=c=d\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |