document.write( "Question 854012: Identify the vertex, focus and directrix of the parabola with the equation x^2-6x-8y+49=0 \n" ); document.write( "
Algebra.Com's Answer #514422 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Identify the vertex, focus and directrix of the parabola with the equation x^2-6x-8y+49=0 \n" ); document.write( "*** \n" ); document.write( "x^2-6x-8y+49=0 \n" ); document.write( "x^2-6x-8y=-49 \n" ); document.write( "complete the square: \n" ); document.write( "(x^2-6x+9)-8y=-49+9 \n" ); document.write( "(x-3)^2=8y-40 \n" ); document.write( "(x-3)^2=8(y-5) \n" ); document.write( "This is an equation of a parabola that opens up: \n" ); document.write( "Its basic equation: (x-h)^2=4p(y-k), (h,k)=coordinates of vertex \n" ); document.write( "For given problem: \n" ); document.write( "vertex:(3,5) \n" ); document.write( "axis of symmetry: x=3 \n" ); document.write( "4p=8 \n" ); document.write( "p=2 \n" ); document.write( "focus: (3,7)(p-distance above vertex on the axis of symmetry) \n" ); document.write( "directrix: y=3(p-distance below vertex on the axis of symmetry)\r \n" ); document.write( "\n" ); document.write( "see graph below as a visual check:\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |