document.write( "Question 854012: Identify the vertex, focus and directrix of the parabola with the equation x^2-6x-8y+49=0 \n" ); document.write( "
Algebra.Com's Answer #514422 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Identify the vertex, focus and directrix of the parabola with the equation x^2-6x-8y+49=0
\n" ); document.write( "***
\n" ); document.write( "x^2-6x-8y+49=0
\n" ); document.write( "x^2-6x-8y=-49
\n" ); document.write( "complete the square:
\n" ); document.write( "(x^2-6x+9)-8y=-49+9
\n" ); document.write( "(x-3)^2=8y-40
\n" ); document.write( "(x-3)^2=8(y-5)
\n" ); document.write( "This is an equation of a parabola that opens up:
\n" ); document.write( "Its basic equation: (x-h)^2=4p(y-k), (h,k)=coordinates of vertex
\n" ); document.write( "For given problem:
\n" ); document.write( "vertex:(3,5)
\n" ); document.write( "axis of symmetry: x=3
\n" ); document.write( "4p=8
\n" ); document.write( "p=2
\n" ); document.write( "focus: (3,7)(p-distance above vertex on the axis of symmetry)
\n" ); document.write( "directrix: y=3(p-distance below vertex on the axis of symmetry)\r
\n" ); document.write( "\n" ); document.write( "see graph below as a visual check:\r
\n" ); document.write( "\n" ); document.write( "\"+graph%28+300%2C+300%2C+-10%2C+10%2C+-10%2C+10%2C%28x%5E2-6x%2B49%29%2F8%29+\"
\n" ); document.write( "
\n" ); document.write( "
\n" );