document.write( "Question 848088: Find the vertices,foci,and asymptotes of the hyperbola. Then sketch the graph ((y^2)/(16))-((x^2)/(4))=1 \n" ); document.write( "
Algebra.Com's Answer #511474 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the vertices,foci,and asymptotes of the hyperbola. Then sketch the graph \n" ); document.write( "((y^2)/(16))-((x^2)/(4))=1 \n" ); document.write( "*** \n" ); document.write( "This is an equation of a hyperbola with vertical transverse axis. \n" ); document.write( "Its standard form of equation: \n" ); document.write( "center: ((0,0) \n" ); document.write( "a^2=16 \n" ); document.write( "a=4 \n" ); document.write( "vertices: (0±a,0)=(0±4,0)=(-4,0) and (4,0) \n" ); document.write( "b^2=4 \n" ); document.write( "b=2 \n" ); document.write( "c^2=a^2+b^2=16+4=20 \n" ); document.write( "c≈√20≈4.5 \n" ); document.write( "foci: (0±c,0)=(0±4.5,0)=(-4.5,0) and (4.5,0) \n" ); document.write( "slope of asymptotes=±a/b=±4/2=±2 \n" ); document.write( "Equation of asymptotes: \n" ); document.write( "y=2x \n" ); document.write( "y=-2x\r \n" ); document.write( "\n" ); document.write( "see graph below: \n" ); document.write( "y=4(1+x^2/4)^.5\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |