\r\n" );
document.write( "First we find the complementary solution of the \r\n" );
document.write( "complementary homogeneous differential equation:\r\n" );
document.write( "\r\n" );
document.write( "y''' + 4y' = 0\r\n" );
document.write( "\r\n" );
document.write( "The auriliary polynomial equation is\r\n" );
document.write( "\r\n" );
document.write( "r³ + 4r = 0\r\n" );
document.write( "r(r²+4) = 0\r\n" );
document.write( "r=0, r=±2i, which we think of as
\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Now we look for a particular solution to the original differential equation.\r\n" );
document.write( "\r\n" );
document.write( "The right side is x + 3cos(x)\r\n" );
document.write( "\r\n" );
document.write( "That would ordinarily make us think of this particular solution;\r\n" );
document.write( "\r\n" );
document.write( "Ax + Bcos(x) + Csin(x)\r\n" );
document.write( "\r\n" );
document.write( "We do not need a constant term because the complementary solution\r\n" );
document.write( "already has c1.\r\n" );
document.write( "\r\n" );
document.write( "However there is a \"conflict\" with the term x in the right side\r\n" );
document.write( "and the term Ax in that choice for a particular solution. So we\r\n" );
document.write( "must change that term by multiplying the term Ax by x, getting Ax². \r\n" );
document.write( "That means we must still have a term in x. So we redo the assumed \r\n" );
document.write( "particular solution to this:\r\n" );
document.write( "\r\n" );
document.write( "yp = Ax² + Bx + Ccos(x) + Dsin(x)\r\n" );
document.write( "\r\n" );
document.write( "yp' = 2Ax + B - Csin(x) + Dcos(x) [we can ignore the B, since we have c1]\r\n" );
document.write( "\r\n" );
document.write( "yp\" = 2A - Ccos(x) - Dsin(x) [we can ignore the 2A, since we have c1]\r\n" );
document.write( "\r\n" );
document.write( "yp''' = Csin(x) - Dcos(x)\r\n" );
document.write( "\r\n" );
document.write( "No we'll line up the terms of the original differential equation:\r\n" );
document.write( "\r\n" );
document.write( " yp''' = Csin(x) - Dcos(x)\r\n" );
document.write( "\r\n" );
document.write( "+4yp' = 8Ax - 4Csin(x) + 4Dcos(x)\r\n" );
document.write( "--------------------------------------------------\r\n" );
document.write( "x + 3cos(x) = 8Ax - 3Csin(x) + 3Dcos(x)\r\n" );
document.write( "\r\n" );
document.write( "Equating coefficients of x: 1 = 8A, so A =
\r\n" );
document.write( "\r\n" );
document.write( "Equating constants: 0 = 4B, so B=0\r\n" );
document.write( "\r\n" );
document.write( "Equating coefficients of cos(x): 3 = 3D, so D = 1 \r\n" );
document.write( "\r\n" );
document.write( "Equating coefficients of sin(x): 0 = -3C, so C = 0\r\n" );
document.write( "\r\n" );
document.write( "Particular solution:\r\n" );
document.write( "\r\n" );
document.write( "yp = Ax² + Bx + Ccos(x) + Dsin(x)\r\n" );
document.write( "\r\n" );
document.write( "yp =
\r\n" );
document.write( "\r\n" );
document.write( "yp =
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "General solution: \r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "



.\r\n" );
document.write( "\r\n" );
document.write( "--------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "If I have time I'll do the other one by variation of parameters later.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "