Algebra.Com's Answer #508728 by Edwin McCravy(20056)  You can put this solution on YOUR website! if a,b,c are in HP and ab + bc + ca = 15 then ca = \n" );
document.write( "\r\n" );
document.write( "Since a,b,c are in harmonic progression, their \r\n" );
document.write( "reciprocals , , form an arithmetic sequence:\r\n" );
document.write( "\r\n" );
document.write( "Let d be the common difference. Then\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Solve each for d\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Since both equal d, they are equal to each other:\r\n" );
document.write( "\r\n" );
document.write( "  \r\n" );
document.write( "\r\n" );
document.write( "Multiply through by LCD of abc\r\n" );
document.write( "\r\n" );
document.write( "ac - bc = ab - ac\r\n" );
document.write( "\r\n" );
document.write( "2ac = ab + bc\r\n" );
document.write( "\r\n" );
document.write( "And since we are given that\r\n" );
document.write( "\r\n" );
document.write( "ab + bc + ca = 15\r\n" );
document.write( "\r\n" );
document.write( "We can substitute 2ac for ab + bc and get\r\n" );
document.write( "\r\n" );
document.write( "2ac + ca = 15\r\n" );
document.write( "\r\n" );
document.write( "And since ac is the same as ca\r\n" );
document.write( "\r\n" );
document.write( "2ca + ca = 15\r\n" );
document.write( "\r\n" );
document.write( "3ca = 15\r\n" );
document.write( "\r\n" );
document.write( "ca = 5\r\n" );
document.write( "\r\n" );
document.write( "Edwin \r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |