document.write( "Question 840859: I'm am trying to do a proof where (sinx - 2 + 1/sinx)/(sinx - 1/sinx) = (sinx - 1)/(sinx + 1)
\n" ); document.write( "I have attempted to convert 1/sinx to cscx then cross multiply which ends up equalizing the top and bottom of the left hand side of the equation to 1 and I've also tried changing sinx -2 + 1/sinx to sin^2x/sinx + 1/sinx -2 over sin^2x/sinx - 1/sinx but then I just get stuck with the 2 in the way of everything. I'm just needing help on how to solve the problem and not just have the answer given to me
\n" ); document.write( "

Algebra.Com's Answer #506479 by hamsanash1981@gmail.com(151)\"\" \"About 
You can put this solution on YOUR website!
LHS (sinx-2 +1/sinx)/(sinx - 1/sinx)
\n" ); document.write( "Evaluating numerator (sin^2x - 2sinx +1)/sinx => (Sin^2x -sinx -sinx +1)/sinx
\n" ); document.write( "Evaluating denominator (sin^2x - 1)/sinx
\n" ); document.write( "now combining numerator and deominator
\n" ); document.write( "=((sin^2x - sinx - sinx +1)/sinx )/((sin^2x -1)/sinx)
\n" ); document.write( "= ((sinx(sinx-1)-(sinx-1))/ (sin^2x-1)
\n" ); document.write( "= (sinx-1)(sinx-1)/(sinx-1)(sinx + 1)
\n" ); document.write( "=(sinx -1)/(sinx + 1)
\n" ); document.write( "= RHS
\n" ); document.write( "
\n" );