document.write( "Question 835835: Find an equation(s) of the circle(s) tangent to 2x - 3y + 6 = 0 at (3,4); center on 3x + 2y - 17 = 0 \n" ); document.write( "
Algebra.Com's Answer #503732 by Alan3354(69443) You can put this solution on YOUR website! Find an equation(s) of the circle(s) tangent to 2x - 3y + 6 = 0 at (3,4); center on 3x + 2y - 17 = 0 \n" ); document.write( "--------------- \n" ); document.write( "The 2 lines intersect at (3,4) --> an infinite # of circles that fit. \n" ); document.write( "3x + 2y - 17 = 0 \n" ); document.write( "y = -3x/2 + 17/2 \n" ); document.write( "Pick any point on the line and find its distance from (3,4) \n" ); document.write( "Use (h,k) for the point \n" ); document.write( " \n" ); document.write( "d is the radius \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "y = -3x/2 + 17/2 --> k = -3h/2 + 17/2 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "---- \n" ); document.write( "Pick any value for h and you get a circle that fits. \n" ); document.write( " \n" ); document.write( " |