document.write( "Question 830912: All verticle of rombus lie on circle find the area of rombus if area of circle is 2464 cm2\r
\n" );
document.write( "\n" );
document.write( "Let us start with some basic facts:
\n" );
document.write( "1. A rhombus inscribed in a circle must be a square, with its diagonals passing through the center of the circle (If you want proof for this I will go into that later, but I don't want to detract from the problem at hand)\r
\n" );
document.write( "\n" );
document.write( "2. Since the area of the circle is 2464, the radius must be the square root of 2464/PI, i.e. 28 centimeters.\r
\n" );
document.write( "\n" );
document.write( "3. That means the diameter of the circle is 56 centimeters.\r
\n" );
document.write( "\n" );
document.write( "4. Now consider either half of this rhombus (square). It is a right-angled triangle with the two minor sides each equal to x (unknown) and hypotenuse equal to 56.\r
\n" );
document.write( "\n" );
document.write( "5. Apply Pythagoras: x-squared + x-squared = 56-squared. That is, 2 times x-squared = 56-squared. So x-squared = 28 times 56 = 1568\r
\n" );
document.write( "\n" );
document.write( "6. The area of the rhombus (square) is therefore 1568 square cm \n" );
document.write( "
Algebra.Com's Answer #501002 by Elomeht(22)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( " |