document.write( "Question 828965: Find The value of cos2x if cotx=12/5, where pi < x <3pi/2 \n" ); document.write( "
Algebra.Com's Answer #499817 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Find The value of cos2x if cotx=12/5, where pi < x <3pi/2
\n" ); document.write( "cotx=12/5(working with a (5-12-13) reference right triangle in quadrant III in which sin<0, cos<0
\n" ); document.write( "sinx=-5/13
\n" ); document.write( "cosx=-12/13
\n" ); document.write( "..
\n" ); document.write( "cos2x=cos^2x-sin^2x=144/169-25/169=119/169
\n" ); document.write( "..
\n" ); document.write( "Calculator check:
\n" ); document.write( "cosx=-12/13 in quadrant III
\n" ); document.write( "x≈202.62
\n" ); document.write( "2x≈405.24˚
\n" ); document.write( "cos2x≈cos(405.24)≈0.7041..
\n" ); document.write( "Exact value as calculated=119/169≈0.7041..
\n" ); document.write( "
\n" );