document.write( "Question 826390: Prove using reciprocal and pythagorean identities: (cscx-cotx)/(secx-1)= cotx
\n" );
document.write( "I have already done:
\n" );
document.write( "((1/sinx)-(cosx/sinx))/((1/cosx)-1))=
\n" );
document.write( "((1-cosx)/sinx))/((1-cosx)/(cosx))=
\n" );
document.write( "((1-cosx)/sinx))*((cosx)/(1-cosx))=
\n" );
document.write( "((1-cosx)cosx))/((sinx(1-cosx))=
\n" );
document.write( "((cosx-(cos^2))/(sinx-sinxcosx)
\n" );
document.write( "This is where is get stuck...
\n" );
document.write( "Thank you \n" );
document.write( "
Algebra.Com's Answer #498163 by jsmallt9(3758)![]() ![]() ![]() You can put this solution on YOUR website! You're going to laugh (or cry) when you see how close you were: \n" ); document.write( " \n" ); document.write( "We're going to reduce this fraction. And since only factors cancel, we will factor the numerator and denominator: \n" ); document.write( " \n" ); document.write( "And, as we can see, a factor will cancel: \n" ); document.write( " \n" ); document.write( "leaving \n" ); document.write( " \n" ); document.write( "which is equal to: \n" ); document.write( " |