document.write( "Question 826183: Find the equation of the hyperbola that satisfies the given conditions:\r
\n" );
document.write( "\n" );
document.write( " Vertex at (6,5)
\n" );
document.write( " Conjugate axis along x-axis
\n" );
document.write( " Asymptotes 5x - 6y - 30 = 0 and 5x + 6y - 30 = 0 \n" );
document.write( "
Algebra.Com's Answer #497922 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the equation of the hyperbola that satisfies the given conditions: \n" ); document.write( "Vertex at (6,5) \n" ); document.write( "Conjugate axis along x-axis \n" ); document.write( "Asymptotes 5x - 6y - 30 = 0 and 5x + 6y - 30 = 0 \n" ); document.write( "*** \n" ); document.write( "hyperbola has a vertical transverse axis \n" ); document.write( "Its standard form of equation: \n" ); document.write( ".. \n" ); document.write( "5x-6y-30=0 \n" ); document.write( "6y=5x-30 \n" ); document.write( "y=5x/6-5 \n" ); document.write( ".. \n" ); document.write( "5x+6y-30=0 \n" ); document.write( "6y=-5x+30 \n" ); document.write( "y=-5x/6+5 \n" ); document.write( "slopes of asymptotes=±5/6 \n" ); document.write( ".. \n" ); document.write( "for hyperbolas with a vertical transverse axis, slopes of asymptotes=±a/b=±5/6 \n" ); document.write( "b=±(6/5)a \n" ); document.write( "a=±5 \n" ); document.write( "a^2=25 \n" ); document.write( "b=±(6/5)a=6 \n" ); document.write( "b^2=36 \n" ); document.write( ".. \n" ); document.write( "asymptotes intersect at center of hyperbola: \n" ); document.write( "5x-6y-30=0 \n" ); document.write( "5x+6y-30=0 \n" ); document.write( "add: \n" ); document.write( "10x-60=0 \n" ); document.write( "10x=60 \n" ); document.write( "x=6 \n" ); document.write( "6y=5x-30 \n" ); document.write( "6y=30-30=0 \n" ); document.write( "y=0 \n" ); document.write( "center: (6,0) \n" ); document.write( "equation of hyperbola: \n" ); document.write( ".. \n" ); document.write( " |