document.write( "Question 826098: determine the equation of the hyperbola whose vertices are the foci of the ellipse 11x^2 + 7y^2 + 14y - 70 = 0 and its foci are the vertices of the given ellipse.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "thanks :D \n" );
document.write( "
Algebra.Com's Answer #497920 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! determine the equation of the hyperbola whose vertices are the foci of the ellipse 11x^2 + 7y^2 + 14y - 70 = 0 and its foci are the vertices of the given ellipse. \n" ); document.write( "*** \n" ); document.write( "11x^2 + 7y^2 + 14y - 70 = 0 \n" ); document.write( "complete the square: \n" ); document.write( "11x^2+7(y^2+2y+1)=70+7=77 \n" ); document.write( " \n" ); document.write( "This is an equation of an ellipse with vertical major axis. \n" ); document.write( "Its standard form: \n" ); document.write( "For given equation of th ellipse: \n" ); document.write( "center:(0,-1) \n" ); document.write( "a^2=11 \n" ); document.write( "a=√11≈3.32 \n" ); document.write( "vertices: (0,-1±a)=(0,-1±√11)=(0,-1±3.32)=(0,-4.32)and(=(0,+2.32) \n" ); document.write( "b^2=7 \n" ); document.write( "b=√7 \n" ); document.write( "c^2=a^2-b^2=11-7=4 \n" ); document.write( "c=±2 \n" ); document.write( "foci:(0,-1±c)=(0,-1±2)=(0,-3)and(=(0,+1) \n" ); document.write( ".. \n" ); document.write( "For given hyperbola: \n" ); document.write( "assume same center as given ellipse: (0,-1) \n" ); document.write( "Hyperbola has a vertical transverse axis: \n" ); document.write( "Its standard form of equation: \n" ); document.write( "a=2(foci of ellipse) \n" ); document.write( "a^2=4 \n" ); document.write( "c^2=11(vertex of ellipse) \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "b^2=c^2-a^2=11-4=7 \n" ); document.write( "Equation of given hyperbola: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |