document.write( "Question 820654: Hello, this is a question from my Algebra 2 textbook: \r
\n" );
document.write( "\n" );
document.write( "Find all values of c for which the equation has (a) two real solutions, (b) one real solution, and (c) two imaginary solutions. \r
\n" );
document.write( "\n" );
document.write( "x^2 - 2x + c = 0\r
\n" );
document.write( "\n" );
document.write( "Thanks! \n" );
document.write( "
Algebra.Com's Answer #493658 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! In the case of x^2 - 2x + c = 0, it is of the form ax^2 + bx + c = 0 where a = 1, b = -2 and c is unknown.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The equation ax^2 + bx + c = 0 has at most 2 solutions. The type and number of unique solutions are determined by the equation below\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "D = b^2 - 4ac\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "which is the discriminant formula. The rules are this\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "* If D > 0, then you'll have 2 real solutions that are distinct.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "* If D = 0, then you'll have exactly 1 real solution (that's also rational).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "* If D < 0, then you'll have 2 imaginary solutions (aka, complex solutions)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So from the rules above, we will have 2 real solutions when D > 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "D > 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b^2 - 4ac > 0 ... replace D with b^2 - 4ac (since D = b^2 - 4ac)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(-2)^2 - 4(1)c > 0 ... plug in a = 1, b = -2, and leave c alone\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 - 4c > 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 - 4c + 4c > 0 + 4c\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 > 4c\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4c < 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4c/4 < 4/4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "c < 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So if c < 1, then D > 0 which will lead to 2 distinct real solutions.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's move onto the second case: When D = 0\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "D = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b^2 - 4ac = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(-2)^2 - 4(1)c = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 - 4c = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 = 4c\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4c = 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "c = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If c = 1, then you'll get exactly one real solution.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can probably guess what the last answer must be, but let's work through it\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "D < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b^2 - 4ac < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(-2)^2 - 4(1)c < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 - 4c < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 < 4c\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4c > 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "c > 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So if c > 1, then you'll get 2 imaginary solutions. \n" ); document.write( " |