document.write( "Question 819982: cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=? \n" ); document.write( "
| Algebra.Com's Answer #493414 by lwsshak3(11628)      You can put this solution on YOUR website! cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=? \n" ); document.write( "*** \n" ); document.write( "cos^2(-4pi/3) \n" ); document.write( "cos(-4π/3)=-1/2 \n" ); document.write( "referenc angle in quadrant II where cos<0 \n" ); document.write( "cos^2(-4pi/3)=1/4 \n" ); document.write( ".. \n" ); document.write( "csc^2(9pi/8) \n" ); document.write( "csc(9π/8)=1/sin(9π/8) \n" ); document.write( "reference angle in quadrant III where csc<0 \n" ); document.write( "use sin half-angle formula \n" ); document.write( "sin(9π/8)=sin((9π/4)/2 \n" ); document.write( "sin((9π/4)/2=√[(1-cos(9π/4))/2]=√[(1-(√2/2)/2)]=√[(2-√2)/4] \n" ); document.write( "sin(9π/8)=√[(2-√2)/4] \n" ); document.write( "csc(9π/8)=1/sin(9π/8)=1/√[(2-√2)/4] \n" ); document.write( "csc^2(9π/8)=1/(2-√2)/4=4/(2-√2)≈6.83 \n" ); document.write( "calculator check: \n" ); document.write( "csc^2(9pi/8)=(1/sin(9π/8))^2≈6.83.. \n" ); document.write( ".. \n" ); document.write( "cot^2(-15pi/8) \n" ); document.write( "cot(-15π/8)=1/tan(-15π/8) \n" ); document.write( "reference angle in quadrant II where cot<0 \n" ); document.write( "use tan half-angle formula \n" ); document.write( "tan(-15π/8)=tan(-15π/4)/2=[sin(-15π/4)]/[1+cos(-15π/4)]=(√2/2)/(1+(√2/2))=√2/(2+√2) \n" ); document.write( "cot(-15π/8)=1/tan(-15π/8)=(2+√2)/√2 \n" ); document.write( "cot^2(-15pi/8)=[(2+√2)/√2]^2=5.83 \n" ); document.write( "calculator check: \n" ); document.write( "cot^2(-15π/8)=[1/tan(-15π/8)]^2≈5.83.. \n" ); document.write( ".. \n" ); document.write( "cos^2(-4pi/3) + csc^2(9pi/8) + cot^2(-15pi/8)=(1/4)+(4/(2-√2))+(/(2+√2)≈.25+6.83+5.83≈12.91 \n" ); document.write( " |