document.write( "Question 817915: Name the coordinates of the four vertices, the two foci, and the equations of the major and minor axes for the ellipse 25x^2+4y^2-150x+32y+189=0 \n" ); document.write( "
Algebra.Com's Answer #492370 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Name the coordinates of the four vertices, the two foci, and the equations of the major and minor axes for the ellipse
\n" ); document.write( "25x^2+4y^2-150x+32y+189=0
\n" ); document.write( "rearrange terms:
\n" ); document.write( "25x^2-150x+4y^2+32y=-189
\n" ); document.write( "complete the square:
\n" ); document.write( "25(x^2-6x+9)+4(y^2+8y+16)=-189+225+64
\n" ); document.write( "25(x-3)^2+4(y+4)^2=100
\n" ); document.write( "\"%28x-3%29%5E2%2F4%2B%28y%2B4%29%5E2%2F25=1\"
\n" ); document.write( "This is an equation of an ellipse with vertical major axis
\n" ); document.write( "Its standard form of equation:
\n" ); document.write( "\"%28x-h%29%5E2%2Fb%5E2%2B%28y-k%29%5E2%2Fa%5E2=1\",a>b, (h,k)=(x,y) coordinates of center
\n" ); document.write( "..
\n" ); document.write( "For given ellipse:
\n" ); document.write( "center: (3,-4)
\n" ); document.write( "a^2=25
\n" ); document.write( "a=√25=5
\n" ); document.write( "vertices:(3,-4±a)=(3,-4±5)=(3,-9) and (3,1)(ends of major axis)
\n" ); document.write( "b^2=4
\n" ); document.write( "b=2
\n" ); document.write( "vertices:(3±b,-4)=(3±2,-4)=(1,-4) and (5,-4)(ends of minor axis)
\n" ); document.write( "c^2=a^2-b^2=25-4=21
\n" ); document.write( "c=√21≈4.6
\n" ); document.write( "foci:(3,-4±c)=(3,-4±4.6)=(3,-8.6) and (3,.6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );