\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "f(x) =
\r\n" );
document.write( "\r\n" );
document.write( "Factor the numerator: Factor the denominator\r\n" );
document.write( "\r\n" );
document.write( " x³-3x²-10x x²+5x+6 \r\n" );
document.write( " x(x²-3x-10) (x+3)(x+2)\r\n" );
document.write( " x(x+3)(x+2)\r\n" );
document.write( "\r\n" );
document.write( "f(x) =
\r\n" );
document.write( "\r\n" );
document.write( "Since (x+3) is a factor of the denominator but not\r\n" );
document.write( "the numerator, there is an asymptote where x+3=0,\r\n" );
document.write( "or at x=-3, which is the equation of the vertical\r\n" );
document.write( "asymptote, where there is a non-removable discontinuite.\r\n" );
document.write( " Since (x+2) is a factor of both denominator and numerator,\r\n" );
document.write( "there is a removable discontinuity where x+2=0, at x=-2.\r\n" );
document.write( "\r\n" );
document.write( "We may cancel the (x+2)'s as long as we also state that\r\n" );
document.write( "x≠2\r\n" );
document.write( "\r\n" );
document.write( "f(x) =
, where x≠2\r\n" );
document.write( "\r\n" );
document.write( "So we graph\r\n" );
document.write( "\r\n" );
document.write( "y =
, leaving a hole at x=2\r\n" );
document.write( "\r\n" );
document.write( "There is a vertical asymptote at x=-3\r\n" );
document.write( "Since the degree of the numberator is 1 more than the degree\r\n" );
document.write( "of the denominator, there is no horizontal asymptote, but there\r\n" );
document.write( "is an oblique (or slant) asymptote, which we find by long\r\n" );
document.write( "division:\r\n" );
document.write( "\r\n" );
document.write( "We have to multiply the numerator out and add +0 to divide:\r\n" );
document.write( "\r\n" );
document.write( "y =
,\r\n" );
document.write( "\r\n" );
document.write( " x- 8+
\r\n" );
document.write( "x+3)x²-5x+ 0\r\n" );
document.write( " x²+3x\r\n" );
document.write( " -8x+ 0\r\n" );
document.write( " -8x-24\r\n" );
document.write( " 34\r\n" );
document.write( "\r\n" );
document.write( "Since the fraction
approaches 0 as x gets large,\r\n" );
document.write( "the graph of f(x) must approach the line y=x-8, which is the\r\n" );
document.write( "equation of the oblique (slant) asymptote.\r\n" );
document.write( "\r\n" );
document.write( "We get the y-intercept by setting x = 0\r\n" );
document.write( "\r\n" );
document.write( "y =
= 0\r\n" );
document.write( "\r\n" );
document.write( "So the y-intercept is (0,0)\r\n" );
document.write( "\r\n" );
document.write( "We get the x-intercepts by setting y = 0 \r\n" );
document.write( "\r\n" );
document.write( "0 =
\r\n" );
document.write( "\r\n" );
document.write( "0 = x(x-5)\r\n" );
document.write( " x=0; x-5=0\r\n" );
document.write( " x=5\r\n" );
document.write( "\r\n" );
document.write( "So the x-intercepts are (0,0) and (5,0)\r\n" );
document.write( "\r\n" );
document.write( "We plot the asymptotes and the intercepts:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we find any relative extrema points by\r\n" );
document.write( "finding the derivative and setting it = 0\r\n" );
document.write( "\r\n" );
document.write( "y =
\r\n" );
document.write( "Multiply the top out:\r\n" );
document.write( "y =
\r\n" );
document.write( "Use the quoptient formula for the derivative:\r\n" );
document.write( "y' =
\r\n" );
document.write( "y' =
\r\n" );
document.write( "y' =
\r\n" );
document.write( "Setting that = 0 to find relative extrema:\r\n" );
document.write( "
= 0\r\n" );
document.write( "x²+6x-15 = 0\r\n" );
document.write( "Unfortunately that doesn't factor, so we must\r\n" );
document.write( "use the quadratic formula:\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "x = -3 ± 2V6\r\n" );
document.write( "Approximating: x=-7.90 and x=1.90\r\n" );
document.write( "Substuting those in y, we get approximately\r\n" );
document.write( " y=-20.8 and y=-1.20\r\n" );
document.write( "\r\n" );
document.write( "Relative extrema candidates are approximately (-7.90,-20.8)\r\n" );
document.write( "and (1.90,-1.20)\r\n" );
document.write( "\r\n" );
document.write( "To find out whether they are relative maximums or minimums,\r\n" );
document.write( "or any inflection points, we must find the second derivative:\r\n" );
document.write( "\r\n" );
document.write( "y' =
\r\n" );
document.write( "Use the quotient formula:\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "y\" =
\r\n" );
document.write( "\r\n" );
document.write( "Substituting x=-7.90, y\" comes out negative,\r\n" );
document.write( "therefore the point (-7.90,-20.8) is a relative\r\n" );
document.write( "maximum, since the curvature is downward\r\n" );
document.write( "\r\n" );
document.write( "Substituting x=1.90, y\" comes out positive,\r\n" );
document.write( "therefore the point (1.90,-1.20) is a relative\r\n" );
document.write( "minimum, since the curvature is upward\r\n" );
document.write( " \r\n" );
document.write( "To find any inflection points we set y\"=0\r\n" );
document.write( "\r\n" );
document.write( "
= 0\r\n" );
document.write( "48 = 0\r\n" );
document.write( "A contradiction so there are no inflection points.\r\n" );
document.write( "\r\n" );
document.write( "So we draw the graph:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "What a terribly long and messy problem!\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "