document.write( "Question 816628: Write an equation in point slope form for the perpendicular bisector of a segment with endpoints M(-5,4), N(1,-2) \n" ); document.write( "
Algebra.Com's Answer #491621 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
M(-5,4), N(1,-2)\r
\n" ); document.write( "\n" ); document.write( "Mid point of MN= (-5+1)/2 , (4-2)/2\r
\n" ); document.write( "\n" ); document.write( "=(-2,1)\r
\n" ); document.write( "\n" ); document.write( "The perpendicular bisector passes through this point and it is perpendicular to the line joining MN\r
\n" ); document.write( "\n" ); document.write( "slope of MN\r
\n" ); document.write( "\n" ); document.write( "(y2-y1)/(x2-x1)\r
\n" ); document.write( "\n" ); document.write( "(-2-4)/(1-(-5)
\n" ); document.write( "-6/6
\n" ); document.write( "=-1\r
\n" ); document.write( "\n" ); document.write( "slope of perpendicular bisector is +1\r
\n" ); document.write( "\n" ); document.write( "The line has slope of 1 and passes through (-2,1)\r
\n" ); document.write( "\n" ); document.write( "y-y1=m(x-x1)\r
\n" ); document.write( "\n" ); document.write( "(y-1)=1(x-(-2))\r
\n" ); document.write( "\n" ); document.write( "y-1=x+2\r
\n" ); document.write( "\n" ); document.write( "y=x+3
\n" ); document.write( "
\n" );