document.write( "Question 814362: Use a half-angle identity to find the exact value of this expression. \r
\n" ); document.write( "\n" ); document.write( "Given sin\"%28theta%29\" = \"2sqrt%282%29%2F3\", 0° < \"theta\" < 90°,\r
\n" ); document.write( "\n" ); document.write( "find cos\"%28theta%2F2%29\"
\n" ); document.write( "

Algebra.Com's Answer #490284 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "Use a half-angle identity to find the exact value of this expression. \r\n" );
document.write( "\r\n" );
document.write( "Given sin\"%28theta%29\" = \"2sqrt%282%29%2F3\", 0° < \"theta\" < 90°,\r\n" );
document.write( "\r\n" );
document.write( "find cos\"%28theta%2F2%29\" \r\n" );
document.write( "\r\n" );
document.write( "---------------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "We are given sin\"%28theta%29\" = \"2sqrt%282%29%2F3\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"%22%22+%2B-+sqrt%28%281%2Bcos%28theta%29%29%2F2%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"2sqrt%282%29%2F3\" is a positive number, the sine is positive in the first two\r\n" );
document.write( " quadrants so 0° < \"theta\" < 180° and 0° < \"theta%2F2\" < 90°,\r\n" );
document.write( "\r\n" );
document.write( "so we take the positive and cos\"%28theta%2F2%29\" = \"sqrt%28%281%2Bcos%28theta%29%29%2F2%29\"\r\n" );
document.write( "\r\n" );
document.write( "So everything's positive and in the first quadrant.\r\n" );
document.write( "\r\n" );
document.write( "Since sin\"%28theta%29\" = \"2sqrt%282%29%2F3\" and the sine is the opposite over the hypotenuse,\r\n" );
document.write( "we draw a right triangle containing \"theta\" with the length of the opposite side as\r\n" );
document.write( "the numerator of \"2sqrt%282%29%2F3\" and the hypotenuse as the denominator of \"2sqrt%282%29%2F3\". \r\n" );
document.write( "\r\n" );
document.write( "Before drawing the right triangle, we calculate the adjacent side using the\r\n" );
document.write( "Pythagorean theorem:\r\n" );
document.write( "\r\n" );
document.write( "c² = a² + b²\r\n" );
document.write( "3² = a² + \"%282sqrt%282%29%29%5E2\"\r\n" );
document.write( " 9 = a² + 4·2\r\n" );
document.write( " 9 = a² + 8\r\n" );
document.write( " 1 = a²\r\n" );
document.write( " 1 = a \r\n" );
document.write( "\r\n" );
document.write( "So the right triangle is like this: \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%28%281%2Bcos%28theta%29%29%2F2%29\"\r\n" );
document.write( "\r\n" );
document.write( "From the right triangle, we can get cos\"%28theta%29\" by\r\n" );
document.write( "using the fact that the cosine is the adjacent over the \r\n" );
document.write( "hypotenuse \"1%2F3\".  Substituting:\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%28%281%2B1%2F3%29%2F2%29\"\r\n" );
document.write( "\r\n" );
document.write( "To simplify the compound fraction under the radical we multiply\r\n" );
document.write( "top and bottom by 3\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%28%283%281%2B1%2F3%29%29%2F3%282%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%28%283%2B1%29%2F6%29\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%284%2F6%29\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%282%2F3%29\"\r\n" );
document.write( "\r\n" );
document.write( "Rationalize the denominator by multiplying top and bottom by 3\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%28%283%2A2%29%2F%283%2A3%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%286%2F9%29\"\r\n" );
document.write( "\r\n" );
document.write( "cos\"%28theta%2F2%29\" = \"sqrt%286%29%2F3%29\"\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );