document.write( "Question 812219: how would you solve 16h to the 5th minus 25 h to the 3rd plus 9h equals 0 \n" ); document.write( "
Algebra.Com's Answer #489055 by Edwin McCravy(20054)\"\" \"About 
You can put this solution on YOUR website!
16h5-25h3+9h = 0\r\n" );
document.write( "\r\n" );
document.write( "Factor out common factor h\r\n" );
document.write( "\r\n" );
document.write( "h(16h4-25h2+9) = 0\r\n" );
document.write( "\r\n" );
document.write( "Factor the trinomial in the parentheses\r\n" );
document.write( "\r\n" );
document.write( "h(16h2-9)(h2-1) = 0\r\n" );
document.write( "\r\n" );
document.write( "Each of those binomial in parentheses are\r\n" );
document.write( "the difference of squares, so factor them:\r\n" );
document.write( "\r\n" );
document.write( "h(4h-3)(4h+3)(h-1)(h+1) = 0\r\n" );
document.write( "\r\n" );
document.write( "By the zero-factor property set all those factors = 0:\r\n" );
document.write( "\r\n" );
document.write( "h=0;  4h-3=0;  4h+3=0 ;   h-1=0;  h+1=0\r\n" );
document.write( "        4h=3     4h=-3      h=1     h=-1\r\n" );
document.write( "         h=\"3%2F4\"      h=\"-3%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "So the solutions are 0, \"3%2F4\", \"-3%2F4\", 1, and -1\r\n" );
document.write( "\r\n" );
document.write( "Edwin

\n" ); document.write( "
\n" ); document.write( "
\n" );