document.write( "Question 810283: use auss approach to find the following sums\r
\n" );
document.write( "\n" );
document.write( "A. 1,+2,+3,+4,+...+98\r
\n" );
document.write( "\n" );
document.write( "B. 1+3+5+7+...+97 \n" );
document.write( "
Algebra.Com's Answer #488050 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Use Gauss approach to find the following sums \n" ); document.write( "A. 1,+2,+3,+4,+...+98 \n" ); document.write( "a = 1 \n" ); document.write( "d = 1 \n" ); document.write( "S(n) = (n/2)(a+L) \n" ); document.write( "S(98) = 49(99) = 4851\r \n" ); document.write( "\n" ); document.write( "------ \n" ); document.write( "B. 1+3+5+7+...+97 \n" ); document.write( "a = 1 \n" ); document.write( "d = 2 \n" ); document.write( "--- \n" ); document.write( "Find \"n\": \n" ); document.write( "97 = 1 + (n-1)2 \n" ); document.write( "96 = (n-1)2 \n" ); document.write( "48 = n=1 \n" ); document.write( "n = 50 \n" ); document.write( "----- \n" ); document.write( "S(50) = (50/2)(1+97) = 2450 \n" ); document.write( "=============================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "================ \n" ); document.write( " |