document.write( "Question 809744: The angle of \theta is between 0 < \theta < 2\pi. Given that the terminal side of \theta passes through (5, -7) use the half angle formulas to find the following\r
\n" ); document.write( "\n" ); document.write( "sin(theta/2)=
\n" ); document.write( "cos(theta/2)=
\n" ); document.write( "tan(theta/2)=
\n" ); document.write( "

Algebra.Com's Answer #487762 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
The angle of \theta is between 0 < \theta < 2\pi. Given that the terminal side of \theta passes through (5, -7)
\n" ); document.write( "----
\n" ); document.write( "x = 5
\n" ); document.write( "y = -7
\n" ); document.write( "r = sqrt[25+49] = sqrt[74]
\n" ); document.write( "=================================
\n" ); document.write( "sin = y/r = -7/sqrt(74)
\n" ); document.write( "cos = x/r = 5/sqrt(74)
\n" ); document.write( "tan = y/x = -7/5
\n" ); document.write( "=========================
\n" ); document.write( "use the half angle formulas to find the following
\n" ); document.write( "sin(theta/2)= sqrt[(1+cos(theta))/2]
\n" ); document.write( "----
\n" ); document.write( "cos(theta/2)= sqrt[1-cos(theta))/2]
\n" ); document.write( "----
\n" ); document.write( "tan(theta/2)= sqrt[(1-cos(theta))/(1+cos(theta)]
\n" ); document.write( "====================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "====================
\n" ); document.write( "
\n" ); document.write( "
\n" );