document.write( "Question 808770: for the interval of 0-2(pi) solve the equation \"for+the+interval+of+0-2%28pi%29+solve+the+equation+\"cos4xcos2x+sin4xsin2x=sqrt(3)/2 \n" ); document.write( "
Algebra.Com's Answer #487189 by DrBeeee(684)\"\" \"About 
You can put this solution on YOUR website!
Given:
\n" ); document.write( "(1) cos(4x)cos(2x) + sin(4x)sin(2x) = sqrt(3)/2
\n" ); document.write( "Use the difference formula
\n" ); document.write( "(2) cos(a-b) = cos(a)cos(b) + sin(a)sin(b) to obtain
\n" ); document.write( "(3) cos(4x - 2x) = cos(4x)cos(2x) + sin(4x)sin(2x)
\n" ); document.write( "Now equate (1) and (3) to get
\n" ); document.write( "(4) cos(4x - 2x) = sqrt(3)/2 or
\n" ); document.write( "(5) cos(2x) = sqrt(3)/2
\n" ); document.write( "Use your calculator to evaluate
\n" ); document.write( "(6) 2x = arccos(sqrt(3)/2) and get
\n" ); document.write( "(7) 2x = 30 or
\n" ); document.write( "(8) x = 15 degrees
\n" ); document.write( "This is also the solution at
\n" ); document.write( "(9) x = 15+180 or
\n" ); document.write( "(10) x = 195 degrees
\n" ); document.write( "Answer: x = {15,195} degrees
\n" ); document.write( "
\n" );