document.write( "Question 808179: The diameter of a circle is 136 cm, and a chord of the circle is 64 cm long. What is the distance between the chord and the center of the circle? \n" ); document.write( "
Algebra.Com's Answer #486820 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
diameter = 136
\n" ); document.write( "r = 68\r
\n" ); document.write( "\n" ); document.write( "chord = 64
\n" ); document.write( "1/2 the chord = 32\r
\n" ); document.write( "\n" ); document.write( "The perpendicular line drawn from the center of the circle to the chord bisects the chord\r
\n" ); document.write( "\n" ); document.write( "the radius , half the chord and vertical segment form a right triangle\r
\n" ); document.write( "\n" ); document.write( "(Hyp)^2= (leg1)^2+ Leg2^2
\n" ); document.write( "Hypotenuse = 68 cm
\n" ); document.write( "leg1= 32 cm
\n" ); document.write( "Leg2= ?
\n" ); document.write( "
\n" ); document.write( "leg2^2=hyp^2-leg1^2
\n" ); document.write( "Leg2^2= 68 ^2 - 32 ^2
\n" ); document.write( "Leg2^2= 4624 - 1024
\n" ); document.write( "Leg2^2= 3600
\n" ); document.write( "Leg2= \"sqrt%28%093600%09%29\"
\n" ); document.write( "Leg2= 60 cm
\n" ); document.write( "
\n" ); document.write( "
\n" );