document.write( "Question 805646: solve the equation in Radians for all exact solutions where appropriate. Round approximate answer in radians to four decimal place. write answer using the least possible non-negative angle measures.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " cos x (5 cos x - 1) = 3\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #485396 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! solve the equation in Radians for all exact solutions where appropriate. Round approximate answer in radians to four decimal place. write answer using the least possible non-negative angle measures. \n" ); document.write( "cos x (5 cos x - 1) = 3 \n" ); document.write( "*** \n" ); document.write( "cos x (5 cos x - 1) = 3 \n" ); document.write( "5cos^2(x)-cos(x)=3 \n" ); document.write( "5cos^2(x)-cos(x)-3=0 \n" ); document.write( "solve for cos(x) by quadratic formula: \n" ); document.write( " \n" ); document.write( "a=5, b=-1, c=-3 \n" ); document.write( "ans: \n" ); document.write( "cos(x)=-0.6810 \n" ); document.write( "use calculator inverse cos key set to radians \n" ); document.write( "x=2.3199+2πk, 3.9633,+2πk, k=integer (In quadrants II and III where cos<0) \n" ); document.write( "or \n" ); document.write( "cos(x)=0.8810 \n" ); document.write( "use calculator inverse cos key set to radians \n" ); document.write( "x=0.4928+2πk, 5.7904,+2πk, k=integer (In quadrants I and IV where cos>0) \n" ); document.write( " \n" ); document.write( " |