document.write( "Question 804680: Prove that for all positive integers n,
\n" );
document.write( "1•1!+2•2!+3•3!+...+n•n!=(n+1)!-1 \n" );
document.write( "
Algebra.Com's Answer #484902 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Prove:\r\n" ); document.write( "\r\n" ); document.write( "1•1!+2•2!+3•3!+...+n•n! = (n+1)!-1\r\n" ); document.write( "\r\n" ); document.write( "The proof is by induction.\r\n" ); document.write( "\r\n" ); document.write( "It is true for n=1\r\n" ); document.write( "\r\n" ); document.write( "1•1! = 1 and (1+1)!-1 = 2!-1 = 2-1 = 1\r\n" ); document.write( "\r\n" ); document.write( "Assume k is such that the proposition is true for n ≦ k\r\n" ); document.write( "\r\n" ); document.write( "We are assuming that \r\n" ); document.write( "\r\n" ); document.write( "(1) 1•1!+2•2!+3•3!+...+k•k! = (k+1)!-1\r\n" ); document.write( "\r\n" ); document.write( "We must use (1) to show (2) \r\n" ); document.write( "\r\n" ); document.write( "(2) 1•1!+2•2!+3•3!+...+(k+1)•(k+1)! = ((k+1)+1)!-1 = (k+2)!-1\r\n" ); document.write( "\r\n" ); document.write( "We start with\r\n" ); document.write( "\r\n" ); document.write( "(1) 1•1!+2•2!+3•3!+...+k•k! = (k+1)!-1\r\n" ); document.write( "\r\n" ); document.write( "We add (k+1)•(k+1)! to both sides\r\n" ); document.write( "\r\n" ); document.write( " 1•1!+2•2!+3•3!+...+k•k!+(k+1)•(k+1)! = (k+1)!-1+(k+1)•(k+1)!\r\n" ); document.write( "\r\n" ); document.write( "= (k+1)!+(k+1)•(k+1)!-1 =\r\n" ); document.write( "\r\n" ); document.write( "Factor (k+1)! out of the first two terms:\r\n" ); document.write( "\r\n" ); document.write( "(k+1)!•[1+(k+1)]-1 = (k+1)!•[1+k+1]-1 = (k+1)!•(k+2)-1 = (k+2)!-1\r\n" ); document.write( "\r\n" ); document.write( "So we have shown (2)\r\n" ); document.write( "\r\n" ); document.write( "We know that it is true for n=1, and for n=k=1 we know that it is true for\r\n" ); document.write( "n=k=2. That means we know it is true for n=k=3, and that means we know it\r\n" ); document.write( "is true for n=k=4, and so on.\r\n" ); document.write( "\r\n" ); document.write( "QED\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |