document.write( "Question 804181: What are the real zeros of f(x)=x^3-x^2-37x-35 \n" ); document.write( "
Algebra.Com's Answer #484649 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Properties of Polynomials:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The Fundamental Theorem of Algebra guarantees that an -th degree polynomial function will have zeros, counting multiplicities, some or all of which may be complex roots.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Complex roots always appear in conjugate pairs, so:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If is even, the polynomial may have 0, 2, 4, ... , n real number zeros.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If is odd, the polynomial is guaranteed to have at least one real number zero, but may have 1, 3, 5, ..., n real number zeros.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Rational Roots Theorem: If a polynomial has a rational number zero, then it will be of the form where is an integer factor of the constant cooefficient, , and is an integer factor of the lead coefficient, \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Corollary to The Fundamental Theorem of Algebra: If is a zero of a polynomial, then is a factor of the polynomial.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "is a third degree polynomial function, hence there is either 1 real zero or there are 3 real zeros. According to the Rational Roots Theorem, if any of these zeros are rational numbers, they are , , or \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We test using Synthetic Division. First test 1:
\n" ); document.write( "
\r\n" );
document.write( "1  |  1   -1   -37   -35\r\n" );
document.write( "   |       1     0   -37\r\n" );
document.write( "   ----------------------\r\n" );
document.write( "      1    0   -37   -72  Last result non-zero, 1 is not a zero.\r\n" );
document.write( "\r\n" );
document.write( "Try -1\r\n" );
document.write( "\r\n" );
document.write( "-1 |  1   -1   -37   -35\r\n" );
document.write( "   |      -1     2    35\r\n" );
document.write( "   ----------------------\r\n" );
document.write( "      1   -2   -35     0  Last result is zero, -1 is a zero\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "Hence is a factor and is the other factor. But is a factorable quadratic.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll leave it to you to finish this.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "Egw to Beta kai to Sigma
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );