document.write( "Question 803720: A boats start To cross a river upstream at an angle of 140 deg to the flaw of the river the boat moves directly across the river at 10m/s as a result of combined effect of the velocity of the stream and the velocity of the boat. Calculate
\n" );
document.write( "(a) the velocity of the stream.
\n" );
document.write( "(b)the velocity of the boat in still in water. \n" );
document.write( "
Algebra.Com's Answer #484462 by josgarithmetic(39618)![]() ![]() ![]() You can put this solution on YOUR website! You may be able to draw this picture:\r \n" ); document.write( "\n" ); document.write( "Horizontal axis, current of river toward the right; vertical axis, upward is \"accross\" the river straight up.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The boat is trying to go into quadrant 4, so that direction of the boat vector is 140 degrees, using \"to the right...\" as the reference direction, the positive x axis. The river vector is just toward the right, no angle, since angle 0 is unrotated and toward the right.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b for the boat's magnitude, r for the river's magnitude. \n" ); document.write( "The boat vector is \n" ); document.write( "The river vector is \n" ); document.write( "The sum of the vectors for b and r is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Adding the components will give you two equations. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "' \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Second part simplified is then \n" ); document.write( "If you prefer for proper accuracy, \n" ); document.write( " \n" ); document.write( " |