document.write( "Question 67977: Could someone please please helpme this:\r
\n" );
document.write( "\n" );
document.write( "1. Let a,b,c be the three distinct positive real numbers.
\n" );
document.write( "Thank you very for your great help!!!!!!!
\n" );
document.write( "a) Prove that a^3+b^3>a^2xb+b^2xa.
\n" );
document.write( "b) Write down , without proving them, similar inequalities for (a^3+c^3) and (b^3+c^3).
\n" );
document.write( "c) Hence, or otherwise, prove that 3(a^3+b^3+c^3)>(a^2+b^2+c^2)(a+b+c)\r
\n" );
document.write( "\n" );
document.write( "2.State why (a-b)^2(a^2+b^2) is non-negative, for all a,b belong to R. Deduce that a^4+b^4is greater or equal to 2(a^3xb-a^2xb^2+axb^3).\r
\n" );
document.write( "\n" );
document.write( "Thanks a million!!! I am waiting for a solution for ages. Please help me , i am desperate...
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #48344 by venugopalramana(3286)![]() ![]() You can put this solution on YOUR website! Could someone please please helpme this: \n" ); document.write( "1. Let a,b,c be the three distinct positive real numbers. \n" ); document.write( "Thank you very for your great help!!!!!!! \n" ); document.write( "a) Prove that a^3+b^3>a^2xb+b^2xa.................1\r \n" ); document.write( "\n" ); document.write( "TST \n" ); document.write( "A^3+B^3-A^2B-B^2A>0 \n" ); document.write( "TST \n" ); document.write( "A^2(A-B)-B^2(A-B)>0 \n" ); document.write( "TST \n" ); document.write( "(A^2-B^2)(A-B)>0 \n" ); document.write( "TST \n" ); document.write( "(A+B)(A-B)(A-B)>0 \n" ); document.write( "TST \n" ); document.write( "(A+B)(A-B)^2>0 \n" ); document.write( "IN LHS (A-B)^2 IS ALWAYS POSITIVE AS IT IS A PERFECT SQUARE AND A AND B ARE DISTINCT \n" ); document.write( "A+B IS ALSO POSITIVE AS A AND B ARE POSITIVE \n" ); document.write( "HENCE THEIR PRODUCT IS ALWAYS +VE...PROVED\r \n" ); document.write( "\n" ); document.write( "b) Write down , without proving them, similar inequalities for (a^3+c^3) and (b^3+c^3). \n" ); document.write( "A^3+C^3>A^2C+C^2A.................2 \n" ); document.write( "B^3+C^3>B^2C+C^2B................3 \n" ); document.write( "ADDING 1,2,3 \n" ); document.write( "2(A^3+B^3+C^3)>\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "c) Hence, or otherwise, prove that 3(a^3+b^3+c^3)>(a^2+b^2+c^2)(a+b+c) \n" ); document.write( "ADDING 1,2,3 \n" ); document.write( "2(A^3+B^3+C^3)>A^2B+B^2A+B^2C+C^2B+C^2A+A^2C \n" ); document.write( "ADDING A^3+B^3+C^3 TO BOTH SIDES \n" ); document.write( "3(A^3+B^3+C^3)>A^3+B^3+C^3+A^2B+B^2A+B^2C+C^2B+C^2A+A^2C=(A^2+B^2+C^2)(A+B+C) \n" ); document.write( "THE LAST ONE IS A STANDARD FORMULA..IF YOU WANT ITS PROOF PLEASE COME BACK..YOU CAN MULTIPLY AND CHECK FOR YOUR SELF.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2.State why (a-b)^2(a^2+b^2) is non-negative, for all a,b belong to R. \n" ); document.write( "(A-B)^2 BEING A PERFECT SQUARE>=0 \n" ); document.write( "A^2+B^2=SUM OF PERFECT SQUARES WHICH IS >=0 \n" ); document.write( "HENCE THEIR PRODUCT IS>=0\r \n" ); document.write( "\n" ); document.write( " Deduce that a^4+b^4is greater or equal to 2(a^3xb-a^2xb^2+axb^3). \n" ); document.write( "(A-B)^2(A^2+B^2)=(A^2+B^2-2AB)(A^2+B^2) \n" ); document.write( "=A^4+A^2B^2+B^2A^2+B^4-2A^3B-2AB^3>=0.........AS PROVED \n" ); document.write( "A^4+B^4>=2(A^3B-A^2B^2+B^3A).....PROVED\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Thanks a million!!! I am waiting for a solution for ages. Please help me , i am desperate... \n" ); document.write( " |