document.write( "Question 795364: Find the lengths of the tangents (8,3) to each circle
\n" );
document.write( "a) x^2+y^2 =9
\n" );
document.write( "b) x^2+y^2=36
\n" );
document.write( "c) x^2 + y^2 = 65
\n" );
document.write( "Can you please help me out? Thanks so much in advance:)
\n" );
document.write( "Can you also please show the steps it would really help me understand:) \n" );
document.write( "
Algebra.Com's Answer #481013 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Find the lengths of the tangents (8,3) to each circle \n" ); document.write( "a) x^2+y^2 =9 \n" ); document.write( "b) x^2+y^2=36 \n" ); document.write( "c) x^2 + y^2 = 65 \n" ); document.write( "---------- \n" ); document.write( "All 3 circles have the center at (0,0). \n" ); document.write( "a) x^2+y^2 =9 \n" ); document.write( "Has a y-intercept of (0,3). \n" ); document.write( "--> length = 8 units. \n" ); document.write( "=========================== \n" ); document.write( "b) x^2+y^2=36 \n" ); document.write( "The line from (0,0) is the hypotenuse of a right triangle formed by (0,0), (8,3) and the tangent point. \n" ); document.write( "Hyp = sqrt(73) \n" ); document.write( "Radius = 6 \n" ); document.write( "--- \n" ); document.write( "t = tangent length \n" ); document.write( "6^2 + t^2 = 73 \n" ); document.write( "t = sqrt(37) \n" ); document.write( "--- \n" ); document.write( "c) x^2 + y^2 = 65 \n" ); document.write( "t = sqrt(8) \n" ); document.write( "------------------ \n" ); document.write( "The tangent points were not asked for. \n" ); document.write( " \n" ); document.write( " |