document.write( "Question 792999: Find all positive integral values of \"k\" for which the trinomial can be factored.\r
\n" );
document.write( "\n" );
document.write( "A.) y^2+8y+k\r
\n" );
document.write( "\n" );
document.write( "B.)z^2+7z+k \n" );
document.write( "
Algebra.Com's Answer #480200 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "y²+8y+k\r\n" ); document.write( "\r\n" ); document.write( "Suppose it factors as\r\n" ); document.write( "\r\n" ); document.write( "(y+a)(y+b) where a and b are positive integers.\r\n" ); document.write( "\r\n" ); document.write( "Then FOIL-ing that out,\r\n" ); document.write( "\r\n" ); document.write( "y²+by+ay+ab\r\n" ); document.write( "\r\n" ); document.write( "Factor y out of the middle two terms:\r\n" ); document.write( "\r\n" ); document.write( "y²+(b+a)y+ab\r\n" ); document.write( "\r\n" ); document.write( "Compare that to \r\n" ); document.write( "\r\n" ); document.write( "y²+8y+k\r\n" ); document.write( "\r\n" ); document.write( "So the coefficient of y which is b+a=8, and the last term ab=k\r\n" ); document.write( "\r\n" ); document.write( "b a b+a ab=k factorization\r\n" ); document.write( "1 7 8 7=k y²+8y+7 = (y+1)(y+7)\r\n" ); document.write( "2 6 8 12=k y²+8y+12 = (y+2)(y+6)\r\n" ); document.write( "3 5 8 15=k y²+8y+15 = (y+3)(y+5)\r\n" ); document.write( "4 4 8 16=k y²+8y+16 = (y+4)(y+4) = (y+4)²\r\n" ); document.write( "\r\n" ); document.write( "Answer: all positive integral valuse for k are 7,12,15, and 16\r\n" ); document.write( "\r\n" ); document.write( "Now you do the other one the same way.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |