document.write( "Question 790717: I need to factor the trinomial completely.
\n" ); document.write( "4a^3+12a^2+5a
\n" ); document.write( "

Algebra.Com's Answer #479278 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"4a%5E3%2B12a%5E2%2B5a\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%284a%5E2%2B12a%2B5%29\" Factor out the GCF \"a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"4a%5E2%2B12a%2B5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4a%5E2%2B12a%2B5\", we can see that the first coefficient is \"4\", the second coefficient is \"12\", and the last term is \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"5\" to get \"%284%29%285%29=20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"20\" (the previous product) and add to the second coefficient \"12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"20\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"20\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"20\".\r
\n" ); document.write( "\n" ); document.write( "1*20 = 20
\n" ); document.write( "2*10 = 20
\n" ); document.write( "4*5 = 20
\n" ); document.write( "(-1)*(-20) = 20
\n" ); document.write( "(-2)*(-10) = 20
\n" ); document.write( "(-4)*(-5) = 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1201+20=21
2102+10=12
454+5=9
-1-20-1+(-20)=-21
-2-10-2+(-10)=-12
-4-5-4+(-5)=-9
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"10\" add to \"12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"10\" both multiply to \"20\" and add to \"12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"12a\" with \"2a%2B10a\". Remember, \"2\" and \"10\" add to \"12\". So this shows us that \"2a%2B10a=12a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4a%5E2%2Bhighlight%282a%2B10a%29%2B5\" Replace the second term \"12a\" with \"2a%2B10a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284a%5E2%2B2a%29%2B%2810a%2B5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%282a%2B1%29%2B%2810a%2B5%29\" Factor out the GCF \"2a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2a%282a%2B1%29%2B5%282a%2B1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282a%2B5%29%282a%2B1%29\" Combine like terms. Or factor out the common term \"2a%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"a%284a%5E2%2B12a%2B5%29\" then factors further to \"a%282a%2B5%29%282a%2B1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4a%5E3%2B12a%5E2%2B5a\" completely factors to \"a%282a%2B5%29%282a%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4a%5E3%2B12a%5E2%2B5a=a%282a%2B5%29%282a%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"a%282a%2B5%29%282a%2B1%29\" to get \"4a%5E3%2B12a%5E2%2B5a\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );