document.write( "Question 790014: 5z^2-17z+14 \n" ); document.write( "
Algebra.Com's Answer #479011 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming you want to factor.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5z%5E2-17z%2B14\", we can see that the first coefficient is \"5\", the second coefficient is \"-17\", and the last term is \"14\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"14\" to get \"%285%29%2814%29=70\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"70\" (the previous product) and add to the second coefficient \"-17\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"70\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"70\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,7,10,14,35,70\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-7,-10,-14,-35,-70\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"70\".\r
\n" ); document.write( "\n" ); document.write( "1*70 = 70
\n" ); document.write( "2*35 = 70
\n" ); document.write( "5*14 = 70
\n" ); document.write( "7*10 = 70
\n" ); document.write( "(-1)*(-70) = 70
\n" ); document.write( "(-2)*(-35) = 70
\n" ); document.write( "(-5)*(-14) = 70
\n" ); document.write( "(-7)*(-10) = 70\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-17\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1701+70=71
2352+35=37
5145+14=19
7107+10=17
-1-70-1+(-70)=-71
-2-35-2+(-35)=-37
-5-14-5+(-14)=-19
-7-10-7+(-10)=-17
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-7\" and \"-10\" add to \"-17\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-7\" and \"-10\" both multiply to \"70\" and add to \"-17\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-17z\" with \"-7z-10z\". Remember, \"-7\" and \"-10\" add to \"-17\". So this shows us that \"-7z-10z=-17z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5z%5E2%2Bhighlight%28-7z-10z%29%2B14\" Replace the second term \"-17z\" with \"-7z-10z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285z%5E2-7z%29%2B%28-10z%2B14%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%285z-7%29%2B%28-10z%2B14%29\" Factor out the GCF \"z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%285z-7%29-2%285z-7%29\" Factor out \"2\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z-2%29%285z-7%29\" Combine like terms. Or factor out the common term \"5z-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5z%5E2-17z%2B14\" factors to \"%28z-2%29%285z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"5z%5E2-17z%2B14=%28z-2%29%285z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28z-2%29%285z-7%29\" to get \"5z%5E2-17z%2B14\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );