document.write( "Question 784931: Describe the values of a,h,k and movement of each graph of the ff. given quadratic functions:\r
\n" );
document.write( "\n" );
document.write( "1. y=(x-3)^2
\n" );
document.write( "2. y=)(x-1)^2+4
\n" );
document.write( "3. y=(x+3)^2-2
\n" );
document.write( "4. y=2(x-3)^2+2
\n" );
document.write( "5. y=-3x^2+5\r
\n" );
document.write( "\n" );
document.write( "I don't really understand this topic, please help me with this. Thank you very much :) \n" );
document.write( "
Algebra.Com's Answer #477429 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Describe the values of a,h,k and movement of each graph of the ff. given quadratic functions: \n" ); document.write( "1. y=(x-3)^2 \n" ); document.write( "2. y=)(x-1)^2+4 \n" ); document.write( "3. y=(x+3)^2-2 \n" ); document.write( "4. y=2(x-3)^2+2 \n" ); document.write( "5. y=-3x^2+5 \n" ); document.write( "*** \n" ); document.write( "The above are forms of equation for parabolas. There are 4 different configurations: a is a coefficient, (h,k)=(x,y) coordinates of the vertex \n" ); document.write( "y=a(x-h)^2+k, a>0, parabola opens up \n" ); document.write( "y=-a(x-h)^2+k, a<0, parabola opens down \n" ); document.write( "x=a(y-k)^2+h, a>0, parabola opens right \n" ); document.write( "x=-a(y-k)^2+h,a<0, parabola opens left \n" ); document.write( "This problem only deals with the first 2 configurations \n" ); document.write( ".. \n" ); document.write( "1. y=(x-3)^2, a=1, h=3, k=0,parabola opens up, vertex: (3,0) \n" ); document.write( "2. y=(x-1)^2+4, a=1, h=1, k=4,parabola opens up, vertex: (1,4) \n" ); document.write( "3. y=(x+3)^2-2, a=1, h=-3, k=-2,parabola opens up, vertex: (-3,-2) \n" ); document.write( "4. y=2(x-3)^2+2, a=2, h=3, k=2,parabola opens up, vertex: (3,2) \n" ); document.write( "5. y=-3x^2+5,a=-3, h=0, k=5,parabola opens down, vertex: (0,5) \n" ); document.write( " |