document.write( "Question 778421: Factor.\r
\n" ); document.write( "\n" ); document.write( "−3y^3 + 15y^2 − 18y
\n" ); document.write( "

Algebra.Com's Answer #474632 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"-3y%5E3%2B15y%5E2-18y\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-3y%28y%5E2-5y%2B6%29\" Factor out the GCF \"-3y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"y%5E2-5y%2B6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"y%5E2-5y%2B6\", we can see that the first coefficient is \"1\", the second coefficient is \"-5\", and the last term is \"6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"6\" to get \"%281%29%286%29=6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"6\" (the previous product) and add to the second coefficient \"-5\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"6\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"6\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"6\".\r
\n" ); document.write( "\n" ); document.write( "1*6 = 6
\n" ); document.write( "2*3 = 6
\n" ); document.write( "(-1)*(-6) = 6
\n" ); document.write( "(-2)*(-3) = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-5\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
161+6=7
232+3=5
-1-6-1+(-6)=-7
-2-3-2+(-3)=-5
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-2\" and \"-3\" add to \"-5\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-2\" and \"-3\" both multiply to \"6\" and add to \"-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-5y\" with \"-2y-3y\". Remember, \"-2\" and \"-3\" add to \"-5\". So this shows us that \"-2y-3y=-5y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2%2Bhighlight%28-2y-3y%29%2B6\" Replace the second term \"-5y\" with \"-2y-3y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y%5E2-2y%29%2B%28-3y%2B6%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-2%29%2B%28-3y%2B6%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-2%29-3%28y-2%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y-3%29%28y-2%29\" Combine like terms. Or factor out the common term \"y-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-3y%28y%5E2-5y%2B6%29\" then factors further to \"-3y%28y-3%29%28y-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-3y%5E3%2B15y%5E2-18y\" completely factors to \"-3y%28y-3%29%28y-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"-3y%5E3%2B15y%5E2-18y=-3y%28y-3%29%28y-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"-3y%28y-3%29%28y-2%29\" to get \"-3y%5E3%2B15y%5E2-18y\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );