document.write( "Question 778412: Factor by using trial factors.\r
\n" ); document.write( "\n" ); document.write( "3p^2 + 20p - 32
\n" ); document.write( "

Algebra.Com's Answer #474606 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3p%5E2%2B20p-32\", we can see that the first coefficient is \"3\", the second coefficient is \"20\", and the last term is \"-32\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"-32\" to get \"%283%29%28-32%29=-96\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-96\" (the previous product) and add to the second coefficient \"20\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-96\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-96\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,16,24,32,48,96\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-16,-24,-32,-48,-96\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-96\".\r
\n" ); document.write( "\n" ); document.write( "1*(-96) = -96
\n" ); document.write( "2*(-48) = -96
\n" ); document.write( "3*(-32) = -96
\n" ); document.write( "4*(-24) = -96
\n" ); document.write( "6*(-16) = -96
\n" ); document.write( "8*(-12) = -96
\n" ); document.write( "(-1)*(96) = -96
\n" ); document.write( "(-2)*(48) = -96
\n" ); document.write( "(-3)*(32) = -96
\n" ); document.write( "(-4)*(24) = -96
\n" ); document.write( "(-6)*(16) = -96
\n" ); document.write( "(-8)*(12) = -96\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"20\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-961+(-96)=-95
2-482+(-48)=-46
3-323+(-32)=-29
4-244+(-24)=-20
6-166+(-16)=-10
8-128+(-12)=-4
-196-1+96=95
-248-2+48=46
-332-3+32=29
-424-4+24=20
-616-6+16=10
-812-8+12=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"24\" add to \"20\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"24\" both multiply to \"-96\" and add to \"20\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"20p\" with \"-4p%2B24p\". Remember, \"-4\" and \"24\" add to \"20\". So this shows us that \"-4p%2B24p=20p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3p%5E2%2Bhighlight%28-4p%2B24p%29-32\" Replace the second term \"20p\" with \"-4p%2B24p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283p%5E2-4p%29%2B%2824p-32%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%283p-4%29%2B%2824p-32%29\" Factor out the GCF \"p\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%283p-4%29%2B8%283p-4%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28p%2B8%29%283p-4%29\" Combine like terms. Or factor out the common term \"3p-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3p%5E2%2B20p-32\" factors to \"%28p%2B8%29%283p-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3p%5E2%2B20p-32=%28p%2B8%29%283p-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28p%2B8%29%283p-4%29\" to get \"3p%5E2%2B20p-32\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );