\r\n" );
document.write( "6x³ > 7x² + 3x\r\n" );
document.write( "\r\n" );
document.write( "There are three cases to consider, when\r\n" );
document.write( "x > 0, when x = 0, and when x < 0.\r\n" );
document.write( "\r\n" );
document.write( "--------------------------\r\n" );
document.write( "\r\n" );
document.write( "Case 1: x > 0\r\n" );
document.write( "\r\n" );
document.write( "6x³ > 7x² + 3x\r\n" );
document.write( "\r\n" );
document.write( "Since x is positive, we may divide\r\n" );
document.write( "through by x without changing the\r\n" );
document.write( "direction of the inequality.\r\n" );
document.write( "\r\n" );
document.write( " 6x² > 7x + 3\r\n" );
document.write( "\r\n" );
document.write( "6x² - 7x - 3 > 0\r\n" );
document.write( "\r\n" );
document.write( "(2x-3)(3x+1) > 0\r\n" );
document.write( "\r\n" );
document.write( "Setting each of those two parentheses =\r\n" );
document.write( "0 gives critical numbers
and\r\n" );
document.write( "
. We can ignore the negative\r\n" );
document.write( "since x is positive for this case, and\r\n" );
document.write( "so we take 0 as the lower critical\r\n" );
document.write( "number. So the critical numbers are 0\r\n" );
document.write( "and
.\r\n" );
document.write( "\r\n" );
document.write( "If x is between the two critical\r\n" );
document.write( "valuee, say x=1, the inequality becomes\r\n" );
document.write( "\r\n" );
document.write( " [2(1)-3][3(1)+1] > 0\r\n" );
document.write( " (-1)(4) > 0\r\n" );
document.write( " -4 > 0\r\n" );
document.write( "\r\n" );
document.write( "That's false, so the inequality does\r\n" );
document.write( "not hold in the interval between the\r\n" );
document.write( "critical values 0 and
.\r\n" );
document.write( "\r\n" );
document.write( "If x >
, say x=2, the\r\n" );
document.write( "inequality becomes\r\n" );
document.write( "\r\n" );
document.write( "[2(2)-3][3(2)+1] > 0\r\n" );
document.write( " (4-3)(6+1) > 0 \r\n" );
document.write( " (1)(7) > 0\r\n" );
document.write( " 7 > 0\r\n" );
document.write( "\r\n" );
document.write( "That's true so the inequality is\r\n" );
document.write( "true when x is in the interval (
,∞)\r\n" );
document.write( "\r\n" );
document.write( "So for case 1, the inequality has\r\n" );
document.write( "solution set\r\n" );
document.write( "\r\n" );
document.write( "(
,∞)\r\n" );
document.write( "\r\n" );
document.write( "----------------------------\r\n" );
document.write( "\r\n" );
document.write( "Case 2: x=0\r\n" );
document.write( "\r\n" );
document.write( "This case is ruled out because\r\n" );
document.write( "\r\n" );
document.write( "6x³ > 7x² + 3x becomes 0 > 0 which is\r\n" );
document.write( "false.\r\n" );
document.write( "\r\n" );
document.write( "----------------------------\r\n" );
document.write( "\r\n" );
document.write( "Case 3: x < 0\r\n" );
document.write( "\r\n" );
document.write( "6x³ > 7x² + 3x\r\n" );
document.write( "\r\n" );
document.write( "Since x is negative, if we divide\r\n" );
document.write( "through by x we must change the\r\n" );
document.write( "direction of the inequality.\r\n" );
document.write( "\r\n" );
document.write( " 6x² < 7x + 3\r\n" );
document.write( "\r\n" );
document.write( "6x² - 7x - 3 < 0\r\n" );
document.write( "\r\n" );
document.write( "(2x-3)(3x+1) < 0\r\n" );
document.write( "\r\n" );
document.write( "Setting each of those two parentheses =\r\n" );
document.write( "0 gives critical numbers
and\r\n" );
document.write( "
. The inequality is not true \r\n" );
document.write( "at either of the critical numbers. We\r\n" );
document.write( "can ignore the positive critical number\r\n" );
document.write( "since x is negative for this case, and\r\n" );
document.write( "so we take 0 as the upper critical\r\n" );
document.write( "number. So the critical numbers are\r\n" );
document.write( "
and 0.\r\n" );
document.write( "\r\n" );
document.write( "If x <
, say x=-1, the\r\n" );
document.write( "inequality becomes\r\n" );
document.write( "\r\n" );
document.write( "[2(-1)-3][3(-1)+1] < 0\r\n" );
document.write( " (-2-3)(-3+1) < 0 \r\n" );
document.write( " (-5)(-2) < 0\r\n" );
document.write( " 10 < 0\r\n" );
document.write( "\r\n" );
document.write( "That's false so the inequality does not\r\n" );
document.write( "hold when x is less than
\r\n" );
document.write( "\r\n" );
document.write( "If x is between the two critical\r\n" );
document.write( "numbers, say x=-.01, the inequality\r\n" );
document.write( "becomes\r\n" );
document.write( "\r\n" );
document.write( " [2(-.01)-3][3(0)+1] < 0\r\n" );
document.write( " (-3.02)(1) < 0\r\n" );
document.write( " -3.02 < 0\r\n" );
document.write( "\r\n" );
document.write( "That's true, so Case 3 is true\r\n" );
document.write( "when (
,0).\r\n" );
document.write( "\r\n" );
document.write( "So for case 3, the inequality has\r\n" );
document.write( "solution set\r\n" );
document.write( "\r\n" );
document.write( "(
,0)\r\n" );
document.write( "\r\n" );
document.write( "Answer: The solution set for the given \r\n" );
document.write( "inequality is:\r\n" );
document.write( "\r\n" );
document.write( "(
,0) U (
,∞)\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "