document.write( "Question 770841: INSTRUCTIONS: Construct a regular proof to derive the conclusion of the following argument:
\n" ); document.write( "1. H v (~T > R) 2. Hv (E > F) 3. ~T v E 4. ~H & D / R v F
\n" ); document.write( "

Algebra.Com's Answer #469818 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5. from 4 by Simplification\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "6. from 5 and 1 by Disjunctive Syllogism\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "7. from 5 and 2 by Disjunctive Syllogism\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "8. Assume , then from 3 by Disjunctive Syllogism\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "9. Then from 7 by Modus Ponens\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "10. Assume , then from 6 by Modus Ponens\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "11. Therefore from 8, 9, and 10 by Tertium non datur.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "Egw to Beta kai to Sigma
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );