document.write( "Question 66076: log2x+log(x+1)=log(log1000)\r
\n" );
document.write( "\n" );
document.write( "log7-log(4x+5)+log(2x-3)=0\r
\n" );
document.write( "\n" );
document.write( "logx^5=(logx)^5\r
\n" );
document.write( "\n" );
document.write( "3^92x+1)=4^(3-x) \n" );
document.write( "
Algebra.Com's Answer #46801 by Nate(3500)![]() ![]() ![]() You can put this solution on YOUR website! log2x + log(x+1) = log(log1000) \n" ); document.write( "log(2x(x + 1)) = log(3) \n" ); document.write( "log(2x^2 + 2x) - log(3) = 0 \n" ); document.write( "log((2x^2 + 2x)/3)) = 0 \n" ); document.write( "(2x^2 + 2x)/3 = 1 \n" ); document.write( "2x^2 + 2x = 3 \n" ); document.write( "x^2 + x = 3/2 At this point, you can choose your own way of solving. \n" ); document.write( "(x + 1/2)^2 = 6/4 + 1/4 = 7/4 \n" ); document.write( "x + 1/2 = +- sqrt(7)/2 \n" ); document.write( "x = (-1 +- sqrt(7))/2 \n" ); document.write( "You can not take the log of a negative number: x = (-1 + sqrt(7))/2 \n" ); document.write( "Answer: about 0.8228 (I don't believe in rounding for other mathematical purposes.) \n" ); document.write( " \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n" ); document.write( "log(7) - log(4x + 5) + log(2x - 3) = 0 \n" ); document.write( "log(7(2x - 3)/(4x + 5)) = 0 \n" ); document.write( "(14x - 21)/(4x + 5) = 1 \n" ); document.write( "14x - 21 = 4x + 5 \n" ); document.write( "10x = 26 \n" ); document.write( "x = 2.6 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n" ); document.write( "log(x^5) = (log(x))^5 \n" ); document.write( "5*log(x) = (log(x))^5 \n" ); document.write( "5 = log(x)^4 \n" ); document.write( "5^(1/4) = log(x) \n" ); document.write( "10^(5^(1/4)) = x \n" ); document.write( "and x = 1 because each side is an equivalent (neither is adding or subtracting) \n" ); document.write( " \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \n" ); document.write( "3^92x+1)=4^(3-x) \n" ); document.write( "I do not know where the parenthesis ends. All you do is log each side and discover an answer that is relatively close. \n" ); document.write( " |